The first steps in chitin degradation in marine bacteria involve chitinase, which produces N,N'-diacetylchitobiose (GlcNAc)2 from chitin. Moreover, in Vibrio bacteria, chitinase activity is enhanced by heterodisaccharide β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) produced from (GlcNAc)2 by chitin oligosaccharide deacetylase (COD). However, the role of COD in other marine bacteria, such as Shewanella, remains unexplored. This study investigates GlcNAc-GlcN's impact on chitinase gene expression and enzyme production in S. baltica ATCC BAA-1091, drawing parallels with Vibrio parahaemolyticus RIMD2210633. Using real-time quantitative PCR, the study assesses the upregulation of chitinase gene expression in S. baltica in response to GlcNAc-GlcN, informed by COD's known ability to produce GlcNAc-GlcN from (GlcNAc)2. In Vibrio, GlcNAc-GlcN considerably upregulates chitinase gene expression. This study posits a similar regulatory mechanism in S. baltica, with preliminary investigations indicating COD's capacity to produce GlcNAc-GlcN. This study highlights the importance of exploring GlcNAc-GlcN's regulatory role in chitin metabolism across diverse marine bacteria. The potential induction of chitinase production in S. baltica suggests broader ecological implications. Further research is crucial for a comprehensive understanding of chitin utilization and regulatory pathways in marine bacterial genera.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsle/fnae064 | DOI Listing |
J Nat Prod
January 2025
Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States.
A structurally novel metabolite, fatuamide A (), was discovered from a laboratory cultured strain of the marine cyanobacterium sp., collected from Faga'itua Bay, American Samoa. A bioassay-guided approach using NCI-H460 human lung cancer cells directed the isolation of fatuamide A, which was obtained from the most cytotoxic fraction.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.
Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, 's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence activity with its critical role in bacterial stress responses. Our findings reveal that is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions.
View Article and Find Full Text PDFMicrob Genom
January 2025
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
Members of the phylum inhabit a wide range of ecosystems including soils. We analysed the global patterns of distribution and habitat preferences of various lineages across major ecosystems (soil, engineered, host-associated, marine, non-marine saline and alkaline and terrestrial non-soil ecosystems) in 248 559 publicly available metagenomic datasets. Classes , , and were highly ubiquitous and showed a clear preference to soil over non-soil habitats, while classes and showed preferences to non-soil habitats.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.
Marine resources are attractive for screening new useful bacteria. From a marine sediment sample, we performed isolation and screening of bacterial strains in search of new bioactive compounds. HPLC and ESI-MS analysis indicated that the new bacterium, Lysinibacillus sp.
View Article and Find Full Text PDFmSystems
January 2025
Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
Unlabelled: Marine protists form complex communities that are shaped by environmental and biological ecosystem properties, as well as ecological interactions between organisms. While all of these factors play a role in shaping protistan communities, the specific ways in which these properties and interactions influence protistan communities remain poorly understood. Fourteen years and 9 months of eukaryotic amplicon (18S-V4 rRNA gene) data collected monthly at the San Pedro Ocean Time-series (SPOT) station were used to evaluate the impacts that environmental and biological factors, and protist-protist interactions had on protistan community composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!