Bioinspired copper oxide nanocomposites: harnessing plant extracts for enhanced photocatalytic performance.

Environ Sci Pollut Res Int

Department of Chemistry, Gobi Arts & Science College, Gobichettipalayam, 638453, Erode, Tamil Nadu, India.

Published: August 2024

This study focuses on developing copper oxide-based nanocomposites using plant extracts for photocatalytic applications. Curcuma amada leaf and Alysicarpus vaginalis leaf extracts were utilized alongside recycled copper precursors to synthesize photocatalysts via a green synthesis approach. Structural characterization through X-ray diffraction confirmed the formation of monoclinic CuO with reduced crystallite sizes due to plant extract incorporation. Fourier-transform infrared spectroscopy identified additional functional groups from the plant extracts, enhancing the material's properties. UV-Vis spectroscopy demonstrated increased light absorption and narrowed bandgaps in the nanocomposites, crucial for efficient photocatalysis under visible light. Morphological studies using FESEM revealed unique leaf-like structures in nanocomposites, indicative of the plant extract's influence on morphology. Photocatalytic degradation of methylene blue, rhodamine B, Congo red, and reactive blue 171 dyes showed enhanced performance of plant extract-modified CuO compared to without plant extract mediated CuO, attributed to improved charge carrier separation and extended lifetime. The effects of pH, catalyst dosage, and dye concentration on degradation efficiency were systematically investigated, highlighting optimal conditions for each dye type. Radical scavenger studies confirmed the roles of holes and hydroxyl radicals in the degradation process. Kinetic analysis revealed pseudo-second-order kinetics for dye degradation, underscoring the effectiveness of the nanocomposites. Overall, this research provides insights into sustainable photocatalytic materials using plant extracts and recycled copper, showcasing their potential for environmental remediation applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34646-3DOI Listing

Publication Analysis

Top Keywords

plant extracts
16
plant
8
recycled copper
8
plant extract
8
nanocomposites
5
extracts
5
bioinspired copper
4
copper oxide
4
oxide nanocomposites
4
nanocomposites harnessing
4

Similar Publications

Phytochemical composition, antioxidant and antimicrobial activities of Delile ex Godr flowers extracts.

Nat Prod Res

January 2025

Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.

The phytochemical profile of various plant species reveals that some compounds possess notable antioxidant and antimicrobial properties. In this study we investigated for the first time, the antioxidant activity (FRAP, DPPH and TAC), total phenolic contents and total flavonoid contents of Delile ex Godr flowers extracts (-hexane, ethyl acetate and methanol) as well as their antimicrobial activity. The results obtained showed that the methanol extract contained the highest content of total phenolics (346.

View Article and Find Full Text PDF

Plant Compounds Inhibit the Growth of W12 Cervical Precancer Cells Containing Episomal or Integrant HPV DNA; Tanshinone IIA Synergizes with Curcumin in Cervical Cancer Cells.

Viruses

December 2024

Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.

This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.

View Article and Find Full Text PDF

The search for neuroprotective compounds in lavender is driven by its traditional use for brain health, with antioxidant activity serving as a key mechanism in reducing oxidative stress and supporting cognitive function. Lavender's potential to protect neurons is based on its calming, anti-stress properties, which increase the brain's resistance to neurodegeneration. Although lavender is not a traditional medicinal plant in Ukraine, it is increasingly recognised for its medicinal properties and is widely cultivated in the country.

View Article and Find Full Text PDF

"Radix Saniculae": Phytochemical Characterization and Potential Adulteration of an Austrian Traditional Wound-Healing Agent.

Plants (Basel)

January 2025

Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

The aerial parts (Herba Saniculae) and the underground parts (Radix Saniculae) of (sanicle) have been used traditionally in Austrian folk medicine to treat wounds. Interestingly, in the Austrian vernacular, "Radix Saniculae" can also refer to the underground parts of . This ambiguity can lead to mistakes in using these two plants and, importantly, adulterations.

View Article and Find Full Text PDF

Antioomycete Nanoformulation for Biocontrol of English Walnut Crown and Root Rot Caused by .

Plants (Basel)

January 2025

Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile.

In Chile and worldwide, walnut () production faces significant losses due to crown and root rot caused by the phytopathogen . Currently, control methods have proven insufficient or unfavorable for the environment, increasing the need for sustainable alternatives. This research evaluates nanoemulsions based on extracts of medicinal plants endemic to Chile to control in walnut crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!