Piezoelectricity in quantum rare-earth metallic boron oxides with the coupling between magnetic, electric and elastic subsystem is studied theoretically. It is proved that the change of piezoelectric modules of the considered crystals are proportional to components of the quadrupole susceptibility, which determines the external magnetic and electric fields, strain and temperature dependences of that change. We show why holmium compounds manifest the strongest renormalization among other rare-earth ions in this family of crystals. The reason is in the structure of the low energy term of the electron configuration, depending on spins and orbital moments of 4f electrons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306776 | PMC |
http://dx.doi.org/10.1038/s41598-024-69307-5 | DOI Listing |
Nat Commun
December 2024
Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Spin-polarized edge states in two-dimensional materials hold promise for spintronics and quantum computing applications. Constructing stable edge states by tailoring two-dimensional semiconductor materials with bulk-boundary correspondence is a feasible approach. Recently layered NiI is suggested as a two-dimensional type-II multiferroic semiconductor with intrinsic spiral spin ordering and chirality-induced electric polarization.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, US.
The correlational structure of brain activity dynamics in the absence of stimuli or behavior is often taken to reveal intrinsic properties of neural function. To test the limits of this assumption, we analyzed peripheral contributions to resting state activity measured by fMRI in unanesthetized, chemically immobilized male rats that emulate human neuroimaging conditions. We find that perturbation of somatosensory input channels modifies correlation strengths that relate somatosensory areas both to one another and to higher-order brain regions, despite the absence of ostensible stimuli or movements.
View Article and Find Full Text PDFNat Commun
December 2024
Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.
View Article and Find Full Text PDFNat Commun
December 2024
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
The discovery of ferromagnetism in van der Waals (vdW) materials has enriched the understanding of two-dimensional (2D) magnetic orders and opened new avenues for fundamental physics research and next generation spintronics. However, achieving ferromagnetic order at room temperature, along with strong perpendicular magnetic anisotropy, remains a significant challenge. In this work, we report wafer-scale growth of vdW ferromagnet FeGaTe using molecular beam epitaxy.
View Article and Find Full Text PDFNat Commun
December 2024
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Resting-state functional connectivity (rsFC) has been essential to elucidate the intricacy of brain organization, further revealing clinical biomarkers of neurological disorders. Although functional magnetic resonance imaging (fMRI) remains a cornerstone in the field of rsFC recordings, its interpretation is often hindered by the convoluted physiological origin of the blood-oxygen-level-dependent (BOLD) contrast affected by multiple factors. Here, we capitalize on the unique concurrent multiparametric hemodynamic recordings of a hybrid magnetic resonance optoacoustic tomography platform to comprehensively characterize rsFC in female mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!