Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Vocalizations from infants, particularly sounds associated with respiratory distress, are fundamental for observational scoring of respiratory tract issues. Listening to these infant sounds is a prevalent technique for decision-making in newborn intensive care units. Expiratory grunting, indicative of the severity and presence of potential conditions, is valuable, however, this evaluative method is subjective and prone to error. This study investigates the potential of computer-aided analysis to offer an objective scale for assessing the severity of respiratory tract problems, utilizing digital recordings of grunting sounds.
Methods: The original data set is formed with a total of 189 grunting sound segments collected from 38 infants. Multiple evaluation approaches were performed to reveal the relation between spectral characteristics of the recordings and the severity or existence of respiratory distress.
Results: Three spectral features were evaluated as prominently related to hospital stay duration and respiratory distress. The harmonic ratio of the recordings was graded as the most-related spectral feature that would characterize the severity.
Conclusions: The potential of an innovative and objective grading approach is first investigated for replacing the human ear with a computer-aided evaluation system. The results are promising and the detected relation between expert ear-based scoring and harmonic ratio suggests that the spectral character of the grunting sounds would reflect the nature of respiratory conditions. Moreover, this study underlines those spectral features of digital grunting recordings that would be functional for automated prediction and decision-making.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jvoice.2024.07.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!