Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The gastric stability of eight barbiturates (BARs) (barbital, primidone, allobarbital, phenobarbital, cyclobarbital, pentobarbital, secobarbital, and thiobutabarbital (TBB)) was examined in artificial gastric juice using LC/UV detection. Among the eight BARs, only TBB was degraded at higher temperatures. Furthermore, the degradation product of TBB was isolated, structurally analyzed, and finally identified as 5-butan-2-yl-5-ethyl-1,3-diazinane-2,4,6-trione, also known as butabarbital. The study elucidated that butabarbital was formed by substituting the sulfur atom of the carbonyl group at the 2-position of TBB with an oxygen atom under acidic condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.c24-00391 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!