Alternative cleavage and polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3' UTRs from the same genetic locus, potentially impacting mRNA translation, localization, and stability. Developmentally regulated APA can thus make major contributions to cell type-specific gene expression programs as cells differentiate. During spermatogenesis, ∼500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of cleavage factor II (CFII), orchestrates APA during spermatogenesis. Knockdown of or in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell type-specific APA at selected genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368245 | PMC |
http://dx.doi.org/10.1101/gad.351649.124 | DOI Listing |
Arch Toxicol
January 2025
Applied Biology Department, Miguel Hernández de Elche University, Elche, Spain.
Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.
The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.
View Article and Find Full Text PDFJ Cell Biol
April 2025
Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.
View Article and Find Full Text PDFCraniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks).
View Article and Find Full Text PDFUnlabelled: Experimental studies have demonstrated that nutritional changes during development can result in phenotypic changes to mammalian cheek teeth. This developmental plasticity of tooth morphology is an example of phenotypic plasticity. Because tooth development occurs through complex interactions between manifold processes, there are many potential mechanisms which can contribute to a tooth's norm of reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!