A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Secure discovery of genetic relatives across large-scale and distributed genomic data sets. | LitMetric

AI Article Synopsis

  • Finding relatives in genomic studies is tough when data is spread across multiple organizations with sharing restrictions.
  • SF-Relate is a new federated algorithm that uses a unique hashing approach to efficiently and securely identify genetic relatives by grouping individuals into buckets and only comparing those in the same group.
  • It ensures privacy through multiparty homomorphic encryption, allowing secure computation of relatedness without any private data being shared, successfully identifying 97% of close relatives in large datasets like the UK Biobank.

Article Abstract

Finding relatives within a study cohort is a necessary step in many genomic studies. However, when the cohort is distributed across multiple entities subject to data-sharing restrictions, performing this step often becomes infeasible. Developing a privacy-preserving solution for this task is challenging owing to the burden of estimating kinship between all the pairs of individuals across data sets. We introduce SF-Relate, a practical and secure federated algorithm for identifying genetic relatives across data silos. SF-Relate vastly reduces the number of individual pairs to compare while maintaining accurate detection through a novel locality-sensitive hashing (LSH) approach. We assign individuals who are likely to be related together into buckets and then test relationships only between individuals in matching buckets across parties. To this end, we construct an effective hash function that captures identity-by-descent (IBD) segments in genetic sequences, which, along with a new bucketing strategy, enable accurate and practical private relative detection. To guarantee privacy, we introduce an efficient algorithm based on multiparty homomorphic encryption (MHE) to allow data holders to cooperatively compute the relatedness coefficients between individuals and to further classify their degrees of relatedness, all without sharing any private data. We demonstrate the accuracy and practical runtimes of SF-Relate on the UK Biobank and data sets. On a data set of 200,000 individuals split between two parties, SF-Relate detects 97% of third-degree or closer relatives within 15 h of runtime. Our work enables secure identification of relatives across large-scale genomic data sets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529841PMC
http://dx.doi.org/10.1101/gr.279057.124DOI Listing

Publication Analysis

Top Keywords

data sets
16
genetic relatives
8
relatives large-scale
8
data
8
genomic data
8
relatives
5
individuals
5
secure discovery
4
discovery genetic
4
large-scale distributed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!