On-demand bactericidal and self-adaptive antifouling hydrogels for self-healing and lubricant coatings of catheters.

Acta Biomater

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China. Electronic address:

Published: September 2024

Catheter-related infections are one of the most common nosocomial infections with increasing morbidity and mortality, and robust antibacterial or antifouling catheter coatings remain great challenges for long-term implantation. Herein, multifunctional hydrogel coatings were developed to provide persistent and self-adaptive antifouling and antibacterial effects with self-healing and lubricant capabilities. Polyvinyl alcohol (PVA) with β-cyclodextrin (β-CD) grafts (PVA-Cd) and 4-arm polyethylene glycol (PEG) with adamantane and quaternary ammonium compound (QAC) terminals (QA-PEG-Ad) were crosslinked through host-guest recognitions between adamantane and β-CD moieties to acquire PVEQ coatings. In response to bacterial infections, QACs exhibit reversible transformation between zwitterions (pH 7.4) and cationic lactones (pH 5.5) to generate on-demand bactericidal effect. Highly hydrophilic PEG/PVA backbones and zwitterionic QACs build a lubricate surface and decrease the friction coefficient 10 times compared with that of bare catheters. The antifouling hydrated layer significantly inhibits blood protein adsorption and platelet activation and reveals negligible hemolysis and cytotoxicity. The dynamic host-guest crosslinking achieves full self-healing of cracks in PVEQ hydrogels, and the mechanical profiles were recovered to over 90 % after rejuvenating the broken hydrogels, exhibiting a long-term stability after mechanical stretching, twisting, knotting and compression. After subcutaneous implantation and local bacterial infection, the retrieved PVEQ-coated catheters display no tissue adhesion and 3 log folds lower bacterial number than that of bare catheters. PVEQ coatings effectively prevent the repeated bacterial infections and there are few inflammatory reactions in the surrounding tissue, while substantial lymphoid infiltration and inflammatory cell aggregation occur in muscle tissues around the bare catheter. Thus, this study demonstrates a catheter coating strategy by on-demand bactericidal, self-adaptive antifouling, self-healing and lubricant hydrogels to address medical devices-related infections. STATEMENT OF SIGNIFICANCE: It is estimated over two billion peripheral intravenous catheters are annually used in hospitals around the world, and catheter-associated infection has become a great clinical challenge with rapidly rising morbidity and mortality. Surface coating is considered a promising approach, but substantial challenges remain in the development of coatings that simultaneously satisfy both anti-fouling and antibacterial attributes. Even more, few attempts have been made to design mechanically robust coatings and reversible antibacterial or antifouling capabilities, which are critical for long-term medical implants. To address these challenges, we propose a concise strategy to develop hydrogel coatings from commercially available poly(ethylene glycol) and polyvinyl alcohol. In addition to self-healing and lubricant capabilities, the reversible conversion between zwitterionic and cationic lactones of quaternary ammonium compounds enables on-demand bactericidal and self-adaptive antifouling effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.07.055DOI Listing

Publication Analysis

Top Keywords

on-demand bactericidal
16
self-adaptive antifouling
16
self-healing lubricant
16
bactericidal self-adaptive
12
coatings
8
morbidity mortality
8
antibacterial antifouling
8
hydrogel coatings
8
lubricant capabilities
8
polyvinyl alcohol
8

Similar Publications

Phototherapy has emerged to eradicate recalcitrant bacteria without causing drug resistance, but it is often accompanied by considerable limitations owing to a high tolerance of recalcitrant bacteria to heat and oxidative damage, leading to low efficiency of monotherapy and unwanted side effects. Assuming that employing antimicrobial peptides (AMPs) to disrupt bacterial membranes could reduce bacterial tolerance, a multifunctional "on-demand" nanosystem based on zeolitic imidazolate framework-8 (ZIF-8) with metal ions for intrinsic antibacterial activity was constructed to potently kill methicillin-resistant (MRSA). Then, microneedles (MNs) were used to transdermally deliver the ZIF-8-based nanosystem for localized skin infection.

View Article and Find Full Text PDF

Biodegradable polymer-photosensitizer composites were developed, which is suppressed biodegradation due to bactericidal activity under light irradiation but proceeds under dark conditions. The composites exhibited antibacterial activity under light irradiation, which was attributed to the generation of singlet oxygen (O). Biodegradation was evaluated in seawater using the biochemical oxygen demand (BOD) method.

View Article and Find Full Text PDF

Introduction: Wound infections and formation of biofilms caused by multidrug-resistant bacteria have constituted a series of wound deteriorated and life-threatening problems. The in situ resisting bacterial adhesion, killing multidrug-resistance bacteria, and releasing dead bacteria is strongly required to supply a gap of existing sterilization strategies.

Objectives: This study aims to present a facile approach to construct a bacteria-responsive hydrogel with switchable antimicrobial-antifouling properties through a "resisting-killing-releasing" method.

View Article and Find Full Text PDF

On-demand bactericidal and self-adaptive antifouling hydrogels for self-healing and lubricant coatings of catheters.

Acta Biomater

September 2024

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China. Electronic address:

Catheter-related infections are one of the most common nosocomial infections with increasing morbidity and mortality, and robust antibacterial or antifouling catheter coatings remain great challenges for long-term implantation. Herein, multifunctional hydrogel coatings were developed to provide persistent and self-adaptive antifouling and antibacterial effects with self-healing and lubricant capabilities. Polyvinyl alcohol (PVA) with β-cyclodextrin (β-CD) grafts (PVA-Cd) and 4-arm polyethylene glycol (PEG) with adamantane and quaternary ammonium compound (QAC) terminals (QA-PEG-Ad) were crosslinked through host-guest recognitions between adamantane and β-CD moieties to acquire PVEQ coatings.

View Article and Find Full Text PDF

Bacterial infections pose a significant threat to public health worldwide. Hydrogel-based biomaterials have proven to be particularly useful in addressing persistent bacterial infections due to their stimuli-responsive degradability, high biocompatibility, ability to release antibacterial agents on demand, and long-lasting antibacterial activity. Herein, we fabricated ABA-type triblock copolyether hydrogels, wherein, hexanal, a bioactive aldehyde with antibacterial activity, was affixed to the hydrophobic micellar core via acetal linkage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!