Upcycling waste polyethylene terephthalate (PET) bottles into high-performance activated carbon for electrochemical desalination.

Chemosphere

Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan; Research Center for Future Earth, National Taiwan University, No. 1, Sec. 4. Roosevelt Rd., Taipei, 10617, Taiwan. Electronic address:

Published: September 2024

Upcycling waste polyethylene terephthalate (PET) bottles has attracted intensive research interests. This simultaneously alleviates plastic pollution and achieves a waste-to-resource strategy. Waste PET water bottles were used to fabricate value-added activated carbon (AC) electrodes for capacitive deionization (CDI). The KOH activation temperature (greater than 700 °C) prominently affected the physi-chemical properties and desalination performance of PET-derived activated carbons (PET-AC). Profiting from a large Brunauer-Emmet-Teller specific surface area (1448 m g) with a good mesoporous structure (the ratio of the mesopore volume to the total pore volume was 41.3%), PET-AC-1000 (activated at 1000 °C) possessed a huge specific capacitance of 108 F g for capacitive ion storage. Moreover, when utilized as the electrode material in single-pass CDI, PET-AC-1000 exhibited a maximum electrosorption capacity of 10.82 ± 0.11 mg g and a low level of energy consumption (0.07 kWh mol), associated with good electrochemical charging-discharging cyclic stability. The results provide a promising facile approach to tackle the challenge of plastic pollution and promote the advancement of electrode materials for economic affordable and energy-efficient electrochemical desalination process, which meets the United Nations (UN) sustainable development goals (SDGs).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143029DOI Listing

Publication Analysis

Top Keywords

upcycling waste
8
waste polyethylene
8
polyethylene terephthalate
8
terephthalate pet
8
pet bottles
8
activated carbon
8
electrochemical desalination
8
plastic pollution
8
bottles high-performance
4
activated
4

Similar Publications

Converting multiple hydrophobic aromatic plastic monomers into a single water-soluble substrate to increase bioavailability for the synthesis of polyhydroxyalkanoates by bacteria using batch, fed batch and continuous cultivation.

J Biotechnol

December 2024

School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin D04 N2E5, Ireland; BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science [Science East], University College Dublin, Dublin D04 N2E5, Ireland. Electronic address:

We demonstrate the proof of concept of increasing the bioavailability of carbon substrates, derived from plastic waste, for their conversion to the biodegradable polymer polyhydroxyalkanoate [PHA] by bacteria and test various approaches to PHA accumulation through batch, fed batch and continuous culture. Styrene, ethylbenzene, and toluene are produced from the pyrolysis of mixed plastic waste (Kaminsky, 2021; Miandad et al., 2017), but they are volatile and poorly soluble in water making them difficult to work with in aqueous fermentation systems.

View Article and Find Full Text PDF

peels are rich in bioactive phenolic compounds with various health effects including antioxidant, antiobesity, antiinflammatory, antihypertensive, antihypercholesterolemic, antimicrobial, antidiabetic, and anticarcinogenic activities. Both extractable and nonextractable phenolics are present in significant amounts in peel with diverse bioactivities. While extractable phenolics can be recovered from the fruit peels by conventional extraction methods, nonextractable phenolics remaining in the residues must be released from the cell matrix first by hydrolysis with acid, alkali, or enzymes.

View Article and Find Full Text PDF

We Can Optimize Protein Nutrition and Reduce Nitrogen Waste in Global Pig and Food Production Systems by Adopting Circular, Sustainable, and One Health Practices.

J Nutr

December 2024

Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, United States. Electronic address:

We have exceeded the earth's carrying capacity to manage the amount of nitrogen (N) waste being generated globally, which can have devastating environmental consequences if immediate action is not taken. Our global food system is a major N user and contributor to N waste. Pork is the most consumed animal-derived protein source in the world, but like other food producing animals, the nitrogen use efficiency of converting dietary protein to edible lean meat is less than 50%.

View Article and Find Full Text PDF

Hydroxyl Spillover in Fe-Se Dual-Site Catalysts for Mixed Plastics Assay.

J Am Chem Soc

December 2024

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

The complex composition of real plastic wastes poses a significant challenge for their large-scale disposal. A responsive on-site compositional analysis of plastics is informative in choosing downstream processing methods. Nanocatalyst-based assay kit is highly qualified for this scene; however, there remain no efficient nanocatalysts for plastics due to their highly inert chemistry.

View Article and Find Full Text PDF

Closed-Loop Upcycling of Waste Nylon Plastic under Hydrothermal Clean Water Atmosphere.

Environ Sci Technol

December 2024

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

The extensive use and longevity of nylon plastics pose substantial challenges for plastic management, recycling, and pollution control. Depolymerization and monomer recycling are potential solutions for valorizing waste plastics, but they often rely on complex and costly catalysts. Additionally, various additives in nylon plastics can negatively impact the catalyst efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!