In this study, biotin esterified debranched starch (Bio-DBS) nanoparticles with different molecular weights were prepared to improve the stability and antioxidant activity of resveratrol. The molecular weights of branched starch (DBS, DBS and DBS) determined by high-performance size-exclusion chromatography (HPSEC) were 3306, 3696, and 4688, respectively. Biotin was covalently coupled to DBS through the esterification reaction as a new material to prepare nanoparticles. The morphology, particle size, and loading capacity of Bio-DBS nanoparticles were all related to the molecular weights of DBS. The H NMR results indicated that there was a hydrogen bonding interaction between Bio-DBS and resveratrol, which contributed to the photochemical and antioxidant activity of resveratrol in the nanoparticles. The highest encapsulation efficiency (78.9 %) and loading capacity (15.78 %) of resveratrol were observed in Bio-DBS nanoparticles. Additionally, the cell viability was over 80 % when the concentration of Bio-DBS reached to 200 μg/mL. The Bio-DBS nanoparticles significantly improved the thermal stability, photostability, and antioxidant properties of resveratrol. Therefore, the Bio-DBS nanoparticles prepared in this study can be used as a promising carrier to improve the stability and antioxidant activity of resveratrol and may have potential applications in oral delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134543 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!