A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chemodiversity of dissolved organic matter and its association with the bacterial community at a zinc smelting slag site after 10 years of direct revegetation. | LitMetric

Chemodiversity of dissolved organic matter and its association with the bacterial community at a zinc smelting slag site after 10 years of direct revegetation.

Sci Total Environ

College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China.

Published: November 2024

Dissolved organic matter (DOM) plays a critical role in driving the development of biogeochemical functions in revegetated metal smelting slag sites, laying a fundamental basis for their sustainable rehabilitation. However, the DOM composition at the molecular level and its interaction with the microbial community in such sites undergoing long-term direct revegetation remain poorly understood. This study investigated the chemodiversity of DOM and its association with the bacterial community in the rhizosphere and non-rhizosphere slags of four plant species (Arundo donax, Broussonetia papyrifera, Cryptomeria fortunei, and Robinia pseudoacacia) planted at a zinc smelting slag site for 10 years. The results indicated that the relative abundance of lipids decreased from 18 % to 5 %, while the relative abundance of tannins and lignins/CRAM-like substances increased from 4 % to 10 % and from 44 % to 64 % in the revegetated slags, respectively. The chemical stability of the organic matter in the rhizosphere slag increased due to the retention of recalcitrant DOM components, such as lignins, aromatics, and tannins. As the diversity and relative abundance of the bacterial community increased, particularly within the Proteobacteria, there was better utilization of recalcitrant components (e.g., lignins/CRAM-like compounds), but this utilization was not invariable. In addition, potential preference associations between specific bacterial OTUs and DOM molecules were observed, possibly stimulated by heavy metal bioavailability. Network analysis revealed complex connectivity and strong interactions between the bacterial community and DOM molecules. These specific interactions between DOM molecules and the bacterial community enable adaptation to the harsh conditions of the slag environment. Overall, these findings provide novel insights into the transformation of DOM chemodiversity at the molecular level at a zinc smelting slag sites undergoing long-term revegetation. This knowledge could serve as a crucial foundation for developing direct revegetation strategies for the sustainable rehabilitation of metal smelting slag sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175322DOI Listing

Publication Analysis

Top Keywords

bacterial community
20
smelting slag
20
organic matter
12
zinc smelting
12
direct revegetation
12
slag sites
12
relative abundance
12
dom molecules
12
dissolved organic
8
association bacterial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!