Protists can endure challenging environments sustaining key ecosystem processes of the microbial food webs even under aridic or hypersaline conditions. We studied the diversity of protists at different latitudes of the Atacama Desert by massive sequencing of the hypervariable region V9 of the 18S rRNA gene from soils and microbial mats collected in the Andes. The main protist groups in soils detected in active stage through cDNA were cercozoans, ciliates, and kinetoplastids, while the diversity of protists was higher including diatoms and amoebae in the microbial mat detected solely through DNA. Co-occurrence networks from soils indicated similar assemblages dominated by amplicon sequence variants (ASVs) identified as Rhogostoma, Euplotes, and Neobodo. Microbial mat networks, on the other hand, were structured by ASVs classified as raphid-pennate diatoms and amoebae from the genera Hartmannella and Vannella, mostly negatively correlated to flagellates and microalgae. Additionally, our phylogenetic inferences of ASVs classified as Euplotes, Neobodo, and Rhogostoma were supported by sequence data of strains isolated during this study. Our results represent the first snapshot of the diversity patterns of culturable and unculturable protists and putative keystone taxa detected at remote habitats from the Atacama Desert.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejop.2024.126108DOI Listing

Publication Analysis

Top Keywords

microbial mat
12
atacama desert
12
diversity protists
8
diatoms amoebae
8
euplotes neobodo
8
asvs classified
8
microbial
5
protist diversity
4
diversity co-occurrence
4
co-occurrence patterns
4

Similar Publications

Widespread distribution of chlorophyll f-producing Leptodesmis cyanobacteria.

J Phycol

December 2024

School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China.

Chlorophyll (Chl) f was reported as the fifth Chl in oxygenic photoautotrophs. Chlorophyll f production expanded the utilization of photosynthetically active radiation into the far-red light (FR) region in some cyanobacterial genera. In this study, 11 filamentous cyanobacterial strains were isolated from FR-enriched habitats, including hydrophyte, moss, shady stone, shallow ditch, and microbial mat across Central and Southern China.

View Article and Find Full Text PDF

Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic, and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen.

View Article and Find Full Text PDF

Understanding the roles of habitat filtering, dispersal limitations and biotic interactions in shaping the organization of animal communities is a central research goal in ecology. Attempts to extend these approaches into deep time have the potential to illuminate the role of these processes over key intervals in evolutionary history. The Ediacaran marks one such interval, recording the first macroscopic benthic communities and a stepwise intensification in animal ecosystem engineering.

View Article and Find Full Text PDF

Soil microbes are crucial for ecosystem health and functioning, playing key roles in decomposing organic matter, nutrient cycling, and carbon sequestration. Mycorrhizal fungi, a vital group of soil microbes, establish symbiotic relationships with plant roots, enhancing plant nutrient uptake and improving soil structure. Globally nitrogen (N) enrichment is recognized as a significant regulator of soil microbial communities.

View Article and Find Full Text PDF

β-1,3-Glucanases have prospective applications in areas such as functional oligosaccharide preparation, plant protection, and breweries. In this study, a glycoside hydrolase (GH) family 17 β-1,3-glucanase (BbGlc17A) from bacterium from a microbial mat metagenome from the Great Salt Lake was identified. BbGlc17A catalyzed the hydrolytic conversion of laminarin into β-glucooligosaccharides with polymerization degrees of 3-8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!