Retention indices are values that characterize the retention of a compound in gas chromatography. In practice, retention indices are often assumed to depend only on the structure of the molecule and the type of the stationary phase, but this approximation is incorrect. This study is devoted to studying the dependence of retention indices on the column heating rate in the linear temperature programming mode, using a large and diverse data set. In the NIST 20 database, most data records are recorded in this mode. For stationary phases based on poly(5%-diphenyl-95%-dimethyl)siloxane (5%-phenyl-PDMS), there is a high proportion of records with heating rates of 10-15 K/min. In practice, such a high heating rate is rarely used and the use of such data may cause errors. A search was made for groups of records that were taken from the same primary source, recorded for the same compound and the same stationary phase, but differing in a heating rate. For each of these groups, the value D, the angular coefficient (slope) of the dependence of the retention index on the heating rate, was calculated. This value can take both positive and negative values. The highest values and the greatest variation of D values are observed for polar stationary phases, but further consideration was performed for 5%-phenyl-PDMS due to its greater practical significance. For these stationary phases, the highest D values are observed for aromatic and polyaromatic molecules; oxygen-containing compounds, on the contrary, exhibit lower D values. Negative D values are observed for many trimethylsilyl derivatives. A data set of D values for 756 molecules was selected and published online. There is almost no correlation between D and the retention index, lipophilicity factor logP, and molecular weight. Significant correlations with the number of cycles, the number of rotatable bonds, and the number of aromatic atoms were observed. Linear equations quantitatively relating the molecular descriptors to the D value were constructed. A number of cycles and halogen atoms were shown to contribute positively to the D value, while a number of oxygen atoms and bonds subject to internal rotation contributed negatively. The strong influence of the values related to the conformational rigidity of molecules and the weak influence of polarity allow us to suppose that the entropic factor has a key influence on the D value. A simple empirical linear equation for estimating the value of D is derived and presented in this study. Several machine learning methods for predicting D are compared. The best results are shown by gradient boosting and a random forest. However, the random forest does not achieve high accuracy in predicting the retention indices themselves.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2024.465223DOI Listing

Publication Analysis

Top Keywords

heating rate
20
retention indices
16
dependence retention
12
stationary phases
12
values observed
12
values
9
retention
8
retention heating
8
gas chromatography
8
stationary phase
8

Similar Publications

An update on emerging pharmacological treatments for meibomian gland dysfunction.

Expert Opin Pharmacother

January 2025

Eye Clinic, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy.

Introduction: Meibomian Gland Dysfunction (MGD) represents the most common cause of dry eye disease (DED). Traditional treatments mainly rely on heating and liquifying the meibum to favor its expression. However, recent knowledge advances have led to the development of novel therapies specifically designed for patients with MGD.

View Article and Find Full Text PDF

Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).

View Article and Find Full Text PDF

Ultrafast Synthesis of Oxygen Vacancy-Rich MgFeSiO Cathode to Boost Diffusion Kinetics for Rechargeable Magnesium-Ion Batteries.

Nano Lett

January 2025

National Innovation Center for Industry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds.

View Article and Find Full Text PDF

Relationship between skin temperature and blood flow during exposure to radio frequency energy: implications for device development.

BMC Biomed Eng

January 2025

William B. Burnsed Jr. Department of Mechanical, Aerospace, and Biomedical Engineering, University of South Alabama, 150 Student Services Drive, Mobile, AL, 36688, USA.

Background: The ST response to high frequency EM heating may give an indication of rate of BF in underlying tissue. This novel method, which we have termed REFLO (Rapid Electromagnetic Flow) has potential for applications such as detection of PAD. The method utilizes the relationship between blood flow rate and tissue temperature increase during exposure to radio frequency (RF) energy.

View Article and Find Full Text PDF

Anthropogenic emissions of non-CO greenhouse gases, such as low-concentration coal mine methane (cCH < 30 vol%), have a significant impact on global warming. The main component of coal mine methane is methane (CH), which is both a greenhouse gas and a high-quality clean energy gas. To study the combustion and heat transfer reactions of low-concentration coal mine methane in a catalytic oxidation device, a numerical simulation approach was employed to establish a model of the catalytic oxidation device that includes periodic boundary conditions, methane combustion mechanisms, and turbulent-laminar flow characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!