Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The healing of diabetic wounds has long been a significant challenge in the field of medicine. The elevated sugar levels surrounding diabetic wounds create a conducive environment for harmful bacterial growth, resulting in purulent infections that impede the healing process. Thus, the development of a biomaterial that can enhance the healing of diabetic wounds holds great importance. This study developed electrospun dressings for wound healing by combining traditional Chinese medicine and clay. The study utilized electrospinning technology to prepare polyvinyl alcohol (PVA) nanofiber membranes containing ASB and HNTs. These ASB@HNTs-PVA nanofiber membranes demonstrated rapid hemostasis, along with antibacterial and anti-inflammatory properties, facilitating the recovery of type 2 diabetic (T2D) wounds. Various analyses were conducted to assess the performance of the composite nanofiber membrane, including investigations into its biocompatibility and hemostatic abilities through antibacterial experiments, cell experiments, and mouse liver tail bleeding experiments. Western blot analysis confirmed that the composite nanofiber membrane could decrease the levels of inflammatory factors IL-1β and TNF-α. A type 2 diabetic mouse model was utilized, with wounds artificially induced on the backs of mice. Application of the nanofiber membrane to the wounds further confirmed its anti-inflammatory effects and ability to enhance wound healing in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2024.112780 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!