Synthesis and biological evaluation of imidazolium conjugated with dimethylcardamonin (DMC) as a novel potential agent against MDA-MB-231 triple-negative breast cancer cells.

Biomed Pharmacother

Department of Chemistry, Faculty of Science,  Chiang Mai University, Chiang Mai 50200, Thailand; Division of Biochemistry and Biochemical Innovation, Department of Chemistry, Faculty of Science,  Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:

Published: September 2024

A new imidazolium ionic liquid (IL) halide conjugated with dimethylcardamonin (DMC, 1), namely [Bbim]Br-DMC (3), was synthesised to improve the biological activity of the natural chalcone. DMC was isolated from seeds of Syzygium nervosum A. Cunn. ex DC. which was an effective anti-breast cancer agent. The compound 1 and 3 showed anticancer activity in MDA-MB-231 cells with IC values of 14.54 ± 0.99 μM and 7.40 ± 0.15 μM, respectively. MTT assay showed that compound 3 had cytotoxic effect at least two-fold greater than compound 1 but was low toxic to normal cells of Hs 578Bst. After 48 h, compound 3 at concentration of IC value inhibited the proliferation and induced morphological changes of MDA-MB-231 cells in a time-dependent manner. The cell cycle profile also showed that compound 3 exerted anti-proliferation activity with the cell cycle arrest at G0/G1 phase and compound 3 also induced apoptosis and reduced mitochondrial membrane potential in MDA-MB-231 cells in a dose-dependent manner. In gene expression assay, compound 3 up-regulated pro-apoptotic genes such as Bax and p53 and suppressed anti-apoptotic Bcl-2 whereas there was no effect on DNA repair gene such as PARP1. The Bax/Bcl-2 ratio was significantly increased after treated with compound 3. In the molecular docking study, the interactions between compound 3 and B-DNA structure in the minor groove region via hydrogen bonds was reported. In conclusion, [Bbim]Br-DMC or compound 3 is a potential candidate to induce apoptosis and inhibits proliferation via cell cycle arrest and decreases mitochondrial membrane of triple-negative breast cancer MDA-MB-231 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117249DOI Listing

Publication Analysis

Top Keywords

mda-mb-231 cells
16
cell cycle
12
compound
10
conjugated dimethylcardamonin
8
dimethylcardamonin dmc
8
triple-negative breast
8
breast cancer
8
assay compound
8
cycle arrest
8
mitochondrial membrane
8

Similar Publications

Purpose: Mammary carcinoma is comprised heterogeneous groups of cells with different metastatic potential. 4T1 mammary carcinoma cells metastasized to heart (4THM), liver (4TLM) and brain (4TBM) and demonstrate cancer-stem cell phenotype. Using these cancer cells we found thatTGF-β is the top upstream regulator of metastatic process.

View Article and Find Full Text PDF

Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs.

View Article and Find Full Text PDF

Evaluating the anticancer effects of carnosic acid against breast cancer: An In Vitro investigation.

Tissue Cell

January 2025

Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran. Electronic address:

Background: Carnosic acid (CA) has potential anti-cancer properties, but its effectiveness can be improved by combining it with Folic acid (FA). This research aimed to evaluate the impact of CA and CA-FA conjugate on breast cancer cell lines (MCF-7, MDA-MB-231, and MCA10).

Materials And Methods: The viability of the cell lines was measured using the MTT assay, and the IC₅₀ was determined to compare the cytotoxicity of CA and CA-FA.

View Article and Find Full Text PDF

Design, synthesis, and biological evaluation of N-(2-(adamantan-1-yl)-1H-indol-5-yl)-N-(substituent)-1,2-dicarboxamides as anticancer agents targeting Nur77-mediated endoplasmic reticulum stress.

Bioorg Chem

December 2024

State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China. Electronic address:

Targeting endoplasmic reticulum (ER) stress-induced apoptosis has attracted considerable research interest in anti-cancer drug development. Nur77 is a potential therapeutic target in many cancers and several Nur77 modulators have recently been identified as effective anticancer agents by activating ER stress. As an ongoing work, this study reports a new series of novel N-(2-(adamantan-1-yl)-1H-indol-5-yl)-N-(substituent)-1,2-dicarboxamides as potent Nur77 modulators that cause ER stress-induced apoptosis.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression level of the target genes in the cell. Breast cancer is responsible for the majority of cancer-related deaths among women globally. It has been proven that deregulated miRNAs may play an essential role in the progression of breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!