AI Article Synopsis

  • High chemical oxygen demand (COD) and total suspended solids (TSS) characterize adhesive production industry wastewater, making it difficult to treat with traditional methods due to its low biodegradability and unstable quality.
  • This study investigates the effectiveness of sequential electrochemical processes, starting with electrocoagulation (EC) using Al electrodes, followed by electrooxidation (EO) and peroxi-coagulation (PC) on EC effluent.
  • The results showed significant removal efficiencies for COD, TSS, and UV under optimized conditions, concluding that both EC-EO and EC-PC processes are promising alternatives for treating this challenging wastewater efficiently.

Article Abstract

Adhesive production industry wastewater can be characterized by high chemical oxygen demand (COD) sourced from high refractory organic contaminants and high total suspended solids (TSS) concentration. Biodegradability of the wastewater is low and wastewater quality is unstable. Various treatment processes have limited applicability in such characterized wastewater. In this study, the treatment performance of electrochemical processes was investigated. Because it is not possible to meet the discharge standards by application of only one process for high refractory organic content, sequential electrochemical processes were studied in this work. In the first step of the sequential process, electrocoagulation (EC) using Al electrodes by which better performance was achieved was applied. In the second step, electrooxidation (EO) and peroxi-coagulation (PC) processes were applied to the EC effluent. In EO, Ti/MMO was selected as the most effective anode whereas in PC, Fe was used as the anode, and graphite was used as the cathode. Box-Behnken Design was applied to optimize the operating conditions of EO and PC processes and to obtain mathematical model equations. In the EC process, 77% COD, 78.5% TSS, and 85% UV removal efficiency were obtained under the optimum conditions (pH 7.2, reaction time 35 min, and current density 0.5 mA/cm). With the EO and PC processes applied to the effluent of EC, 68.5% COD, 77% TSS, and 83% UV removal and 77.5% COD, 87% TSS, and 86.5% UV removal were obtained, respectively. The specific energy consumption of EC-EO and EC-PC processes was 16.08 kWh/kg COD and 15.06 kWh/kg COD, respectively. Considering the treatment targets and process operating costs, it was concluded that both sequential electrochemical systems could be promising alternative systems for the treatment of adhesive production industry wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122067DOI Listing

Publication Analysis

Top Keywords

adhesive production
12
production industry
12
industry wastewater
12
electrooxidation peroxi-coagulation
8
treatment adhesive
8
high refractory
8
refractory organic
8
electrochemical processes
8
sequential electrochemical
8
processes applied
8

Similar Publications

Cold atmospheric plasma (CAP) has antimicrobial properties and is also known to stimulate the immune system. These properties could be useful for the development of a novel therapeutic or preventive strategy against respiratory infections in the upper respiratory tract (URT) such as ventilator-associated pneumonia (VAP) without inducing an immune overreaction. This study investigated the cellular responses of polymorphonuclear neutrophils (PMNs) after exposure to CAP in a three-dimensional (3D) model of the URT.

View Article and Find Full Text PDF

Aluminum-carbon nanotube (Al-CNT) composites represent a cutting-edge class of materials characterized by their exceptional mechanical, thermal, and electrical properties, making them highly promising for aerospace, automotive, electronics, and energy applications. This review systematically examines the impact of various fabrication methods, including conventional powder metallurgy, diffusion and reaction coupling, as well as adhesive and reaction bonding on the microstructure and performance of Al-CNT composites. The analysis emphasizes the critical role of CNT dispersion, interfacial bonding, and the formation of reinforcing phases, such as AlC and AlO, in determining the mechanical strength, wear resistance, corrosion resistance, and thermal stability of these materials.

View Article and Find Full Text PDF

The initial investigation evaluates the feasibility of ultra high performance concrete (UHPC) as a material for reusable molds in aluminum casting. Two specific UHPC formulations were investigated: one based on ordinary Portland cement (OPC) and another utilizing alkali-activated materials (AAM). The study focused on investigating the surface through roughness measurements and the thermal durability through repeated casting cycles.

View Article and Find Full Text PDF

Coated metallic stents are the next generation of metallic stents with improved surface properties. To evaluate the degradation behavior of stents in vitro, different in vitro degradation models can be applied: (i) static immersion test: degradation under static fluid condition, (ii) fluid dynamic test: degradation under flowing fluid, and (iii) electrochemical corrosion test: degradation under the influence of electric potential. During these experimental procedures, stents interact with the simulated blood plasma, and degradation products are formed in the form of depositions on the stent surface, likewise in vivo experiments.

View Article and Find Full Text PDF

This study investigates the combustion characteristics and critical thermodynamic conditions for the ignition of TC4 and TC17 alloys under high-speed friction conditions. The results indicate that, under identical rubbing conditions, both the critical pressure and the ignition temperature of the TC17 alloy are higher than those of the TC4 alloy. The critical ignition conditions for both alloys increase with thickness, while they decrease with increasing rotational speed, oxygen concentration, and oxygen pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!