Motor adaptation is attenuated when sensory feedback about the movement is uncertain. Although this was initially shown for small visual errors, attenuation seems not to hold when visual errors are larger and the contributions of implicit adaptation are isolated with the error-clamp method, which makes visual feedback task-irrelevant. Here we ask whether adaptation to a similarly large perturbation is attenuated when task-relevant visual feedback is uncertain. In a first experiment, we tested participants on a 30° movement-contingent visuomotor rotation under both low (cursor) and high (cloud of moving dots) visual feedback uncertainty. In line with optimal integration, we found that the early increase in adaptation and final extent of adaptation were reduced with high feedback uncertainty. In a second experiment, we included several blocks of no-feedback trials during the perturbation block to quantify the contribution of implicit adaptation. Results showed that implicit adaptation was smaller with high compared to low feedback uncertainty throughout the perturbation block. The estimated contribution of explicit adaptation was overall small, particularly for high feedback uncertainty. Our results demonstrate an influence of task-relevant visual feedback, and the resulting target errors, on implicit adaptation. We show that our motor system is sensitive to the feedback it receives even for larger error sizes and accordingly adjusts its learning properties when our ability to achieve the task goal is affected. Motor adaptation is linked to the estimation of our actions. Whereas uncertainty of task-irrelevant visual feedback appears not to influence implicit adaptation for errors beyond a certain size, here we tested whether this is still the case for task-relevant feedback. We show that implicit adaptation is attenuated when task-relevant visual feedback is uncertain, suggesting a dependency on the assessment of not just sensory prediction errors but also target errors.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00180.2024DOI Listing

Publication Analysis

Top Keywords

visual feedback
28
implicit adaptation
24
feedback uncertainty
20
task-relevant visual
16
feedback
13
adaptation
13
adaptation motor
8
motor adaptation
8
adaptation attenuated
8
visual
8

Similar Publications

Previous research has demonstrated that postural stability may be improved by increasing stimulation to the somatosensory system. Wearing lower limb compression garments or textured in-soles have been found to be effective short-term methods for improving postural stability, hypothesized to be due to enhanced tactile feedback. The aim of this study was to assess whether a combined compression-tactile sock increases postural stability in healthy adults, compared to barefoot.

View Article and Find Full Text PDF

Background First-year medical students may find it challenging to integrate complex physiological concepts, particularly neuromuscular physiology. While concept mapping has shown promise in medical education, its specific application in teaching intricate physiological mechanisms still needs to be explored. With this background, the objective of the study was to assess the feasibility of using concept mapping among first-year medical students and to explore the perception of students about concept mapping as an educational tool.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) involves challenges in communication and social interaction, including challenges in recognizing emotions. Existing technological solutions aim to improve social behaviors in individuals with ASD by providing learning aids. This paper presents a real-time environmental translator designed to enhance social behaviors in individuals with ASD using sensory substitution.

View Article and Find Full Text PDF

Ratiometric fluorescent probe and smartphone-based visual recognition for HO and organophosphorus pesticide based on Ce/Ce cascade enzyme reaction.

Food Chem

December 2024

Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China. Electronic address:

Organicphosphorus is a ubiquitous pesticide that has potential hazards to human health and environmental well-being. Therefore, the precise identification of residues of organophosphorus pesticides (OPs) emerges as an urgent necessity. A ratiometric fluorescent sensor for the detection of OPs by leveraging the catalytic activities of Ce and Ce on the two fluorescent substrates 4-Methylumbelliferyl phosphate (4-MUP) and o-phenylenediamine (OPD) correspondingly was designed.

View Article and Find Full Text PDF

The Role of Visual Information Quantity in Fine Motor Performance.

J Funct Morphol Kinesiol

December 2024

Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy.

Background/objectives: Fine motor movements are essential for daily activities, such as handwriting, and rely heavily on visual information to enhance motor complexity and minimize errors. Tracing tasks provide an ecological method for studying these movements and investigating sensorimotor processes. To date, our understanding of the influence of different quantities of visual information on fine motor control remains incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!