A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crosslink-Enhanced Emission-Dominated Design Strategy for Constructing Self-Protective Carbonized Polymer Dots With Near-Infrared Room-Temperature Phosphorescence. | LitMetric

Crosslink-Enhanced Emission-Dominated Design Strategy for Constructing Self-Protective Carbonized Polymer Dots With Near-Infrared Room-Temperature Phosphorescence.

Angew Chem Int Ed Engl

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Published: October 2024

Self-protective carbonized polymer dots (CPDs) with advantageous crosslinked nano-structures have attracted considerable attention in metal-free room temperature phosphorescence (RTP) materials, whereas their RTP emissions are still limited to short wavelength. Expanding their RTP emissions to Near-Infrared (NIR) range is attractive but suffers from the difficulties in constructing narrow energy levels and inhibiting intense non-radiative decay. Herein, a crosslink-enhanced emission (CEE)-dominated construction strategy was proposed, achieving desired NIR RTP (710 nm) in self-protective CPDs for the first time. Structural factors, i.e., crosslinking (covalent-bond CEE), conjugation (conjugated amine with bridging N-H and C=C group), and steric hindrance (confined-domain CEE), were confirmed indispensable for triggering NIR RTP emission in CPDs. Contrast experiments and theoretical calculations further revealed the rationality of the design strategy originating from CEE in terms of promoting the narrow energy level emission of triplet excitons and inhibiting the non-radiative quenching. This work not only firstly achieves NIR RTP in self-protective CPDs but also helps understand the origin of NIR RTP to further guide the synthesis of diverse CPDs with efficient long-wavelength RTP emission.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202408516DOI Listing

Publication Analysis

Top Keywords

nir rtp
16
design strategy
8
self-protective carbonized
8
carbonized polymer
8
polymer dots
8
rtp
8
rtp emissions
8
narrow energy
8
self-protective cpds
8
rtp emission
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!