A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-decadal warming alters predator's effect on prey community composition. | LitMetric

Predator responses to warming can occur via phenotypic plasticity, evolutionary adaptation or a combination of both, changing their top-down effects on prey communities. However, we lack evidence of how warming-induced evolutionary changes in predators may influence natural food webs. Here, we ask whether wild fish subject to warming across multiple generations differ in their impacts on prey communities compared with their nearby conspecifics experiencing a natural thermal regime. We carried out a common garden mesocosm experiment with larval perch (), originating from a heated or reference coastal environment, feeding on zooplankton communities under a gradient of experimental temperatures. Overall, in the presence of fish of heated origin, zooplankton abundance was higher and did not change with experimental warming, whereas in the presence of fish of unheated origin, it declined with experimental temperature. Responses in zooplankton taxonomic and size composition suggest that larvae of heated origin consume more large-sized taxa as the temperature increases. Our findings show that differences between fish populations, potentially representing adaptation to their long-term thermal environments, can affect the abundance, biomass, size and species composition of their prey communities. This suggests that rapid microevolution in predators to ongoing climate warming might have indirect cross-generational ecological consequences propagating through food webs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305412PMC
http://dx.doi.org/10.1098/rspb.2024.0511DOI Listing

Publication Analysis

Top Keywords

prey communities
12
food webs
8
presence fish
8
heated origin
8
multi-decadal warming
4
warming alters
4
alters predator's
4
prey
4
predator's prey
4
prey community
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!