Lab-on-PCB solid propellant microthruster with multi-mode thrust capabilities.

Lab Chip

Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.

Published: September 2024

In the realm of nano/microsatellite clustering, the demand for microthrusters is steadily growing. Solid propellant microthrusters, recognized for their lightweight build and structural simplicity, carry significant commercial promise. However, existing solid propellant microthrusters manufactured using MEMS technology encounter notable issues such as inconsistent thrust generation positions, limited thrust profiles, and issues related to productivity, scalability, and durability. In this study, we propose a novel shared-chamber solid-propellant microthruster design that consistently produces thrust at a designated position and accommodates multiple thrust modes. The components and fabrication of this thruster were developed using lab-on-printed-circuit-board (PCB) technology and PCB surface mount technology, showcasing enhanced structural stability, scalability, and potential for mass production. Our ignition and combustion experiments confirmed the repeatability of the unit operation, a fundamental feature of this innovative microthruster. Furthermore, we successfully implemented and evaluated the power mode for increased thrust and the continuous mode for prolonged operational duration. Integrating the lab-on-PCB-based shared-chamber solid propellant microthruster with propulsion and electronic control systems holds promising potential for future satellite missions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4lc00516cDOI Listing

Publication Analysis

Top Keywords

solid propellant
16
propellant microthruster
8
propellant microthrusters
8
thrust
6
lab-on-pcb solid
4
propellant
4
microthruster
4
microthruster multi-mode
4
multi-mode thrust
4
thrust capabilities
4

Similar Publications

Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP).

View Article and Find Full Text PDF

Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition.

View Article and Find Full Text PDF

Miraculous Al/PDF Composites Using NF to Enhance the Energy Release of Al, Prepared Through an Efficient Method.

Nanomaterials (Basel)

December 2024

School of Safety Science and Engineering (School of Emergency Management), Nanjing University of Science and Technology, Nanjing 210094, China.

To enhance the energy release of Al powder in solid propellant, ploy (difluoroaminomethyl-3-methylethoxybutane) (PDF), which has difluoroamino (NF), was utilized to improve energy and promote combustion efficiency. In this study, Al with three distinct powder sizes (29 μm, 13 μm, and 1~3 μm) was coated with PDF using the solvent/non-solvent method, leading to the formation of Al/PDF composites. The morphology and characteristics of Al/PDF were then characterized.

View Article and Find Full Text PDF

Theoretical Study of Extensive Hydrogen Abstraction Reactions for 2-Hydroxyethylhydrazine (HEH).

J Phys Chem A

January 2025

National Key Laboratory of Solid Propulsion, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China.

Energetic ionic liquids have a high potential to replace the traditional monopropellant hydrazine as a high-energy green propellant and can be widely used in aerospace technology. A high-energy ionic liquid─HEHN has also gained extensive attention from researchers. To explore the reaction mechanism of HEHN and establish a chemical kinetic model for high-energy ionic liquid propellants, 28 hydrogen abstraction reactions of HEH, which is the main decomposition product of HEHN, were investigated in this study.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed new smokeless propellants using an absorption rolling method, enhancing thermal stability by replacing nitroglycerin (NG) with -butyl--nitratoethyl nitramine (Bu-NENA).
  • The study used various testing methods to analyze thermal stability, combustion characteristics, and the effects of Bu-NENA on burning rates and flame temperatures.
  • Results indicated that while increasing Bu-NENA improved thermal stability, it also lowered the burning rate and flame temperature due to heat absorption during its volatilization.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!