Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The structures and high-temperature phase transition of CaUNbO were studied in situ using synchrotron X-ray and neutron powder diffraction. Rietveld refinements provided an accurate description of the crystal structures of both the monoclinic fergusonite-type 2/ structure observed at room temperature and the tetragonal scheelite-type 4/ structure found at high temperatures. Bond valence sum analysis showed Nb to be octahedrally coordinated in the monoclinic fergusonite-type structure, akin to other NbO materials. Rietveld analysis of the variable temperature data allowed for the determination of accurate unit cell parameters and atomic coordinates, as well as revealing a reversible phase transition around ∼750 °C. The Nb-O bond distances display anomalous behavior, with a discontinuity in the longer Nb-O(1') distance coinciding with the phase transition suggestive of a reconstructive phase transition. Mode analysis identified the Γ mode as the primary mode that drives the phase transition; this is linearly coupled to the induced spontaneous strain within the monoclinic fergusonite-type structure. Analysis of the temperature dependence of the Nb() positional parameter, as well as of the ϵ-ϵ and ϵ strain parameters, showed that the phase transition is not strictly second order, with the critical exponent β ≠ 1/2. This study demonstrates the complex structural features of mixed cation metal oxides at elevated temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c02496 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!