The gentle yet cost-effective drying of sensitive products in the food and pharmaceutical industries is becoming increasingly important. To maintain sensitive ingredients, color, structure, and viability of micro-organisms, often freeze-drying is the only possible way to preserve the product. As many products come in as bulk material, they are dried on heated shelves resulting in poor heat and mass transport through the bed. Resulting in a very time and cost intensive process. Therefore, efforts are being made to improve the mass and heat transport of the process. The outer mass transport through the bulk can be improved by continuous mixing of the pellets, facilitating the removal of water vapor from the condenser. In addition, the issue of limited heat transport can be addressed by using volumetric energy input from microwaves. This process is called dynamic microwave freeze-drying. As dynamic microwave freeze-drying is a combined drying and mixing process, with particle properties continuously changing during drying, it is necessary to gain a more detailed insight into the process. For this purpose, a drier is designed that is capable of in situ neutron imaging, a method sensitive to a material's hydrogen content. This paper presents the design of a pilot-scale microwave freeze dryer for in situ neutron imaging and shows the first images taken during the dynamic microwave freeze-drying of bulk particles at the Center for Energy Research, Budapest Neutron Center in Budapest, Hungary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0213685 | DOI Listing |
Nat Commun
January 2025
Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China.
Proc Natl Acad Sci U S A
January 2025
William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.
Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.
Understanding the salt effects on solvation behaviors of thermoresponsive polymers is crucial for designing and optimizing responsive systems suitable for diverse environments. In this work, the effect of potassium salts (CHCOOK, KCl, KBr, KI, and KNO) on solvation dynamics of poly(4-(N-(3'-methacrylamidopropyl)-N,N-dimethylammonio) butane-1-sulfonate) (PSBP), poly(N-isopropylmethacrylamide) (PNIPMAM), and PSBP-b-PNIPMAM films is investigated under saturated water and mixed water/methanol vapor via advanced in situ neutron/optical characterization techniques. These findings reveal that potassium salts enhance the films' hygroscopicity or methanol-induced swellability.
View Article and Find Full Text PDFMed Res Rev
December 2024
Sunshine Lake Pharma Co. Ltd., Dongguan, China.
Targeted charged alpha- and beta-particle therapies are currently being used in clinical radiation treatments as newly developed methods for either killing or controlling tumor cell growth. The alpha particles can be generated either through a nuclear decay reaction or in situ by a nuclear fission reaction such as the boron neutron capture reaction. Different strategies have been employed to improve the selectivity and delivery of radiation dose to tumor cells based on the source of the clinically used alpha particles.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Center for High Pressure Science and Technology Advanced Research, Beijing 100193, P. R. China.
Pressure-induced polymerization (PIP) of aromatic molecules has emerged as an effective method for synthesizing various carbon-based materials. The selection of suitable functionalized molecular precursors is crucial for obtaining the desired structures and functions. In this work, 1,4-difluorobenzene (1,4-DFB) was selected as the building block for PIP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!