Design of a pilot-scale microwave freeze dryer for in situ neutron imaging.

Rev Sci Instrum

Technical University of Munich, School of Life Sciences, Department Life Science Engineering, Food Process Engineering, 85354 Freising, Germany.

Published: August 2024

The gentle yet cost-effective drying of sensitive products in the food and pharmaceutical industries is becoming increasingly important. To maintain sensitive ingredients, color, structure, and viability of micro-organisms, often freeze-drying is the only possible way to preserve the product. As many products come in as bulk material, they are dried on heated shelves resulting in poor heat and mass transport through the bed. Resulting in a very time and cost intensive process. Therefore, efforts are being made to improve the mass and heat transport of the process. The outer mass transport through the bulk can be improved by continuous mixing of the pellets, facilitating the removal of water vapor from the condenser. In addition, the issue of limited heat transport can be addressed by using volumetric energy input from microwaves. This process is called dynamic microwave freeze-drying. As dynamic microwave freeze-drying is a combined drying and mixing process, with particle properties continuously changing during drying, it is necessary to gain a more detailed insight into the process. For this purpose, a drier is designed that is capable of in situ neutron imaging, a method sensitive to a material's hydrogen content. This paper presents the design of a pilot-scale microwave freeze dryer for in situ neutron imaging and shows the first images taken during the dynamic microwave freeze-drying of bulk particles at the Center for Energy Research, Budapest Neutron Center in Budapest, Hungary.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0213685DOI Listing

Publication Analysis

Top Keywords

situ neutron
12
neutron imaging
12
dynamic microwave
12
microwave freeze-drying
12
design pilot-scale
8
pilot-scale microwave
8
microwave freeze
8
freeze dryer
8
dryer situ
8
mass transport
8

Similar Publications

A strategy to reduce thermal expansion and achieve higher mechanical properties in iron alloys.

Nat Commun

January 2025

Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China.

Article Synopsis
  • Iron alloys, particularly steels and magnetic materials, are crucial in various industries but struggle with high thermal expansion, limiting their precision applications.
  • A new strategy has been developed to embed a nano-scale negative thermal expansion (NTE) phase within the iron matrix, effectively reducing the thermal expansion coefficient of an example alloy (Fe-Zr10-Nb6) to about half of standard iron.
  • This alloy demonstrates impressive mechanical properties, achieving 1.5 GPa compressive strength and 17.5% ultimate strain, while the NTE phase helps counterbalance the thermal expansion, indicating a promising method for creating low thermal expansion iron alloys with enhanced performance.
View Article and Find Full Text PDF

Time evolution of a pumped molecular magnet-A time-resolved inelastic neutron scattering study.

Proc Natl Acad Sci U S A

January 2025

William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.

Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.

View Article and Find Full Text PDF

Solvation Dynamics of Thermoresponsive Polymer Films: The Influence of Salt Series in Water and Mixed Water/Methanol Atmosphere.

Adv Sci (Weinh)

December 2024

Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.

Understanding the salt effects on solvation behaviors of thermoresponsive polymers is crucial for designing and optimizing responsive systems suitable for diverse environments. In this work, the effect of potassium salts (CHCOOK, KCl, KBr, KI, and KNO) on solvation dynamics of poly(4-(N-(3'-methacrylamidopropyl)-N,N-dimethylammonio) butane-1-sulfonate) (PSBP), poly(N-isopropylmethacrylamide) (PNIPMAM), and PSBP-b-PNIPMAM films is investigated under saturated water and mixed water/methanol vapor via advanced in situ neutron/optical characterization techniques. These findings reveal that potassium salts enhance the films' hygroscopicity or methanol-induced swellability.

View Article and Find Full Text PDF

Targeted charged alpha- and beta-particle therapies are currently being used in clinical radiation treatments as newly developed methods for either killing or controlling tumor cell growth. The alpha particles can be generated either through a nuclear decay reaction or in situ by a nuclear fission reaction such as the boron neutron capture reaction. Different strategies have been employed to improve the selectivity and delivery of radiation dose to tumor cells based on the source of the clinically used alpha particles.

View Article and Find Full Text PDF

Pressure-induced polymerization (PIP) of aromatic molecules has emerged as an effective method for synthesizing various carbon-based materials. The selection of suitable functionalized molecular precursors is crucial for obtaining the desired structures and functions. In this work, 1,4-difluorobenzene (1,4-DFB) was selected as the building block for PIP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!