Structural biology of shelterin and telomeric chromatin: the pieces and an unfinished puzzle.

Biochem Soc Trans

MRC Laboratory of Molecular Biology, Cambridge, U.K.

Published: August 2024

The six-subunit shelterin complex binds to mammalian telomeres and protects them from triggering multiple DNA damage response pathways. The loss of this protective function by shelterin can have detrimental effects on cells. In this review, we first discuss structural studies of shelterin, detailing the contributions of each subunit and inter-subunit interactions in protecting chromosome ends. We then examine the influence of telomeric chromatin dynamics on the function of shelterin at telomeres. These studies provide valuable insights and underscore the challenges that future research must tackle to attain high-resolution structures of shelterin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617103PMC
http://dx.doi.org/10.1042/BST20230300DOI Listing

Publication Analysis

Top Keywords

telomeric chromatin
8
function shelterin
8
shelterin
6
structural biology
4
biology shelterin
4
shelterin telomeric
4
chromatin pieces
4
pieces unfinished
4
unfinished puzzle
4
puzzle six-subunit
4

Similar Publications

In most Eukaryota, telomeres are protected by the CST complex, composed of CTC1, STN1 and TEN1. In Drosophila, instead, another complex is present, composed of Modigliani, Tea and Verrocchio. We performed a search for STN1 orthologs in Arthropoda, in order to verify if Verrocchio can be considered as such.

View Article and Find Full Text PDF

Non-Canonical TERT Activity Initiates Osteogenesis in Calcific Aortic Valve Disease.

Circ Res

January 2025

Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).

Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.

View Article and Find Full Text PDF

Profiling Tel1 Signaling Reveals a Non-Canonical Motif Targeting DNA Repair and Telomere Control Machineries.

J Biol Chem

January 2025

Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA. Electronic address:

The stability of the genome relies on Phosphatidyl Inositol 3-Kinase-related Kinases (PIKKs) that sense DNA damage and trigger elaborate downstream signaling responses. In S. cerevisiae, the Tel1 kinase (ortholog of human ATM) is activated at DNA double strand breaks (DSBs) and short telomeres.

View Article and Find Full Text PDF

To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies.

View Article and Find Full Text PDF

TRF1 and TRF2 form distinct shelterin subcomplexes at telomeres.

bioRxiv

December 2024

Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing.

The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes . However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!