Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The matching of poly(ethylene oxide) (PEO)-based electrolytes with ultrahigh-nickel cathode materials is crucial for designing new-generation high-energy-density solid-state lithium metal batteries (SLMBs), but it is limited by serious interfacial side reactions between PEO and ultrahigh-nickel materials. Here, a high-concentration electrolyte (HCE) interface with a customized Li solvation sheath is constructed between the cathode and the electrolyte. It induces the formation of an anion-regulated robust cathode/electrolyte interface (CEI), reduces the unstable free-state solvent, and finally achieves the compatibility of PEO-based electrolytes with ultrahigh-nickel cathode materials. Meanwhile, the corrosion of the Al current collector caused by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) ions is prevented by lithium difluoro(oxalato)borate (LiDFOB) ions. The synergistic effect of the double lithium salt is achieved by a well-tailored ratio of TFSI and DFOB in the first solvation sheath of Li. Compared with reported PEO-based SLMBs matched with ultrahigh-nickel (Ni ≥ 90%) cathodes, the SLMB in this work delivers a high discharge specific capacity of 216.4 mAh g (0.1C) even at room temperature. This work points out a direction to optimize the cathode/electrolyte interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c07997 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!