Urea-fused and π-extended single-benzene fluorophores with ultralarge Stokes shifts.

Chem Commun (Camb)

Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.

Published: August 2024

The excited-state tautomer equilibrium of the urea-fused single-benzene fluorophore was synthetically modulated to produce exceptionally large Stokes shifts (>12 400 cm). The key N-H⋯N hydrogen bonding motif utilizes an endogenous proton for long-wavelength emission or an exogenous proton for acid-base chemistry, the balance of which is exploited for fluorescence switching in the solid state.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc03389bDOI Listing

Publication Analysis

Top Keywords

stokes shifts
8
urea-fused π-extended
4
π-extended single-benzene
4
single-benzene fluorophores
4
fluorophores ultralarge
4
ultralarge stokes
4
shifts excited-state
4
excited-state tautomer
4
tautomer equilibrium
4
equilibrium urea-fused
4

Similar Publications

A near-infrared multifunctional fluorescent bio-probe with large stokes shift and high quantum yield for effective determination of heavy metal lead and pesticide glyphosate in vitro and vivo.

J Hazard Mater

December 2024

Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Heavy metal contamination and pesticide residues pose significant threats to human health and ecosystems. Despite its broad applications, fluorescence imaging technology often struggles in complex ecological and biological environments due to disadvantages of background autofluorescence and low quantum yield. This study introduced a near-infrared (NIR) multifunctional "off-on-off" isophorone-based fluorescent bio-probe, DHB, characterized by a high fluorescence quantum yield (10.

View Article and Find Full Text PDF

Near-infrared fluorescence imaging platform with ultra large Stokes shift for monitoring and bioimaging of hydrogen peroxide in the process of ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Hydrogen peroxide (HO), as a strong oxidant, is crucial for the aerobic metabolism of organisms and is intricately linked to the onset of numerous diseases. Real-time monitor HO levels in the environment and biological microenvironment is of paramount importance for environment protection and elucidating HO-related physiological and pathological processes. In this study, a novel near-infrared fluorescence imaging platform was developed and a near-infrared fluorescent probe FBMH was constructed based on the platform with photoinduced electron transfer mechanism.

View Article and Find Full Text PDF

Construction of a mitochondrial-targeting near-infrared fluorescent probe for detection of viscosity changes in type 2 diabetes mellitus and nonalcoholic steatohepatitis.

Talanta

December 2024

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China. Electronic address:

The intracellular viscosity plays a pivotal role as a physicochemical factor and an important indicator of organelles performance. Abnormal changes in subcellular viscosity are often associated with cellular malfunction and various diseases. Nonalcoholic steatohepatitis (NASH) is the most common liver disease related with type 2 diabetes mellitus (T2DM), and both are linked to aberrant mitochondrial viscosity.

View Article and Find Full Text PDF

Bright biocompatible fluorescent imaging dyes with red to near-infrared (NIR) emissions are ideal candidates for fluorescence microscopy applications. Pyrene-benzothiazolium hemicyanine dyes are a new class of lysosome-specific probes reported on recently. In this work, we conduct a detailed implementation study for a pyrene-benzothiazolium derivative, BTP, to explore its potential imaging applications in fluorescence microscopy.

View Article and Find Full Text PDF

Herein, we present a strategy to access a novel class of pH-responsive, dual-state emissive (DSE), highly fluorescent pyrrole-based chromophores diformylation of dipyrroethenes (DPE) followed by condensation with various aniline derivatives. The DPE-based chromophores exhibit a large Stokes shift and maintain good fluorescence quantum yields. Remarkably, these chromophores demonstrate reversible colourimetric changes and a fluorometric 'on-off-on' switch in response to pH variations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!