Functionalized 5-aryldeazaalloxazines have been successfully synthesised through a one-pot, three-component reaction involving -dimethylbarbituric acid, an aromatic aldehyde and aniline. By utilizing readily available reagents, this approach opens up the opportunity for the efficient formation of a variety of 5-aryldeazaalloxazines bearing electron-donating or halogen groups. This practical method is characterised by atom economy and offers a direct route to the introduction of an aryl moiety into the C(5)-position of deazaalloxazines, thereby generating novel catalysts for photoredox catalysis without the need for subsequent purification. Thus, it significantly improves existing approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301046 | PMC |
http://dx.doi.org/10.3762/bjoc.20.161 | DOI Listing |
Org Lett
January 2025
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
Presented herein is a nickel-catalyzed chemo- and regioselective three-component tandem carboamination and cyclization of terminal alkynes with organoboronic acids and anthranils for facile and modular access to 2,3-substituted quinolines. In this process, anthranil has dual roles: serving as an electrophilic aminating reagent and a redox buffer to suppress the generation of an off-cycle Ni(0) complex. Moreover, the anionic acetylacetonate (acac) ligand was found to be vital to ensure a productive Ni(I)-Ni(III)-Ni(I) catalytic cycle.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States.
The direct synthesis of C(sp)-rich architectures is a driving force for innovation in synthetic organic chemistry. Such scaffolds impart beneficial properties onto drug molecules that correlate with greater clinical success. Consequently, there is a strong impetus to develop new methods by which to access sp-rich molecules from commercial feedstocks, such as alkenes.
View Article and Find Full Text PDFChemistryOpen
January 2025
Discipline of Pharmaceutical Sciences, Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, 4000, South Africa.
An efficient microwave-assisted synthesis route for novel oxazolidinone analogues has been developed. The general synthesis of these compounds began with an L-proline-mediated three-component Mannich reaction between commercially available 3-fluoro-4-morpholinoaniline, aqueous formaldehyde and α-hydroxyacetone. This was followed by a one-step cyclisation to form the core structure of oxazolidinone antibiotics which was subsequently derivatized.
View Article and Find Full Text PDFOrg Lett
January 2025
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China.
The efficient construction of chiral aryl-containing organosilicon frameworks via catalytic enantioselective three-component silylarylation of alkenes remains a great challenge. Herein, a photoredox/nickel dual-catalytic asymmetric protocol has been disclosed by using a chiral biimidazoline (BiIM) as the ligand, silylboranes as the silyl radical precursors, aryl bromides as the coupling partners, and morpholine as the promoter. Remarkably, the reaction features mild and green conditions, high reaction efficiency, and excellent enantioselectivity, enabling the facile synthesis of valuable chiral tropic acid and sila-isoflavanone structures.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
This study describes a microfluidic thread-based analytical device (μTAD) capable of in situ mass spectrometric analysis for continuous flow reaction monitoring. Organic reaction screening is foundational to drug discovery. Microfluidic devices are of special interest here because they provide continuous reaction monitoring with advantages such as the use of smaller reagent volumes and short analysis times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!