Introduction: Tuberculosis (TB) stands as a paramount global health concern, contributing significantly to worldwide mortality rates. Effective containment of TB requires deployment of cost-efficient screening method with limited resources. To enhance the precision of resource allocation in the global fight against TB, this research proposed chest X-ray radiography (CXR) based machine learning screening algorithms with optimization, benchmarking and tuning for the best TB subclassification tasks for clinical application.
Methods: This investigation delves into the development and evaluation of a robust ensemble deep learning framework, comprising 43 distinct models, tailored for the identification of active TB cases and the categorization of their clinical subtypes. The proposed framework is essentially an ensemble model with multiple feature extractors and one of three fusion strategies-voting, attention-based, or concatenation methods-in the fusion stage before a final classification. The comprised de-identified dataset contains records of 915 active TB patients alongside 1,276 healthy controls with subtype-specific information. Thus, the realizations of our framework are capable for diagnosis with subclass identification. The subclass tags include: secondary tuberculosis/tuberculous pleurisy; non-cavity/cavity; secondary tuberculosis only/secondary tuberculosis and tuberculous pleurisy; tuberculous pleurisy only/secondary tuberculosis and tuberculous pleurisy.
Results: Based on the dataset and model selection and tuning, ensemble models show their capability with self-correction capability of subclass identification with rendering robust clinical predictions. The best double-CNN-extractor model with concatenation/attention fusion strategies may potentially be the successful model for subclass tasks in real application. With visualization techniques, in-depth analysis of the ensemble model's performance across different fusion strategies are verified.
Discussion: The findings underscore the potential of such ensemble approaches in augmenting TB diagnostics with subclassification. Even with limited dataset, the self-correction within the ensemble models still guarantees the accuracies to some level for potential clinical decision-making processes in TB management. Ultimately, this study shows a direction for better TB screening in the future TB response strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301748 | PMC |
http://dx.doi.org/10.3389/fmed.2024.1391184 | DOI Listing |
Natl Sci Rev
January 2025
Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China.
The weakening and poleward expansion of the Hadley circulation (HC) are considered robust responses of atmospheric meridional circulation to anthropogenic warming. Climate impacts arising from these changes enhance drought conditions and reduce food production in the affected regions. Therefore, understanding the mechanisms of HC changes is critical to anticipating the resultant climate risks.
View Article and Find Full Text PDFACS Omega
December 2024
College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar.
Heliyon
January 2025
Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran.
Sci Rep
January 2025
Department of ECE, Kallam Haranadhareddy Institute of Technology, Guntur, Andhra Pradesh, India.
Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.
View Article and Find Full Text PDFAcad Radiol
January 2025
Guangxi Medical University, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China (D.H., X.W.). Electronic address:
Rationale And Objectives: Accurate preoperative pathological staging of gastric cancer is crucial for optimal treatment selection and improved patient outcomes. Traditional imaging methods such as CT and endoscopy have limitations in staging accuracy.
Methods: This retrospective study included 691 gastric cancer patients treated from March 2017 to March 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!