Background: Carotid atherosclerosis (CAS) is a significant risk factor for cardio-cerebrovascular events. The objective of this study is to employ stacking ensemble machine learning techniques to enhance the prediction of CAS occurrence, incorporating a wide range of predictors, including endocrine-related markers.
Methods: Based on data from a routine health check-up cohort, five individual prediction models for CAS were established based on logistic regression (LR), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost) and gradient boosting decision tree (GBDT) methods. Then, a stacking ensemble algorithm was used to integrate the base models to improve the prediction ability and address overfitting problems. Finally, the SHAP value method was applied for an in-depth analysis of variable importance at both the overall and individual levels, with a focus on elucidating the impact of endocrine-related variables.
Results: A total of 441 of the 1669 subjects in the cohort were finally diagnosed with CAS. Seventeen variables were selected as predictors. The ensemble model outperformed the individual models, with AUCs of 0.893 in the testing set and 0.861 in the validation set. The ensemble model has the optimal accuracy, precision, recall and F1 score in the validation set, with considerable performance in the testing set. Carotid stenosis and age emerged as the most significant predictors, alongside notable contributions from endocrine-related factors.
Conclusion: The ensemble model shows enhanced accuracy and generalizability in predicting CAS risk, underscoring its utility in identifying individuals at high risk. This approach integrates a comprehensive analysis of predictors, including endocrine markers, affirming the critical role of endocrine dysfunctions in CAS development. It represents a promising tool in identifying high-risk individuals for the prevention of CAS and cardio-cerebrovascular diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300245 | PMC |
http://dx.doi.org/10.3389/fendo.2024.1390352 | DOI Listing |
Nat Methods
January 2025
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Artificial Intelligence and Data Science, College of Computer Science and Engineering, University of Hail, Hail, Saudi Arabia.
In the present digital scenario, the explosion of Internet of Things (IoT) devices makes massive volumes of high-dimensional data, presenting significant data and privacy security challenges. As IoT networks enlarge, certifying sensitive data privacy while still employing data analytics authority is vital. In the period of big data, statistical learning has seen fast progressions in methodological practical and innovation applications.
View Article and Find Full Text PDFToxicology
January 2025
Deparment of clinical pharmacy, Jieyang People's Hospital, 522000, China. Electronic address:
Drug-induced autoimmunity (DIA) is a non-IgE immune-related adverse drug reaction that poses substantial challenges in predictive toxicology due to its idiosyncratic nature, complex pathogenesis, and diverse clinical manifestations. To address these challenges, we developed InterDIA, an interpretable machine learning framework for predicting DIA toxicity based on molecular physicochemical properties. Multi-strategy feature selection and advanced ensemble resampling approaches were integrated to enhance prediction accuracy and overcome data imbalance.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea.
Purpose: Descemet membrane endothelial keratoplasty (DMEK) has emerged as a novel approach in corneal transplantation over the past two decades. This study aims to identify predisposing risk factors for post-DMEK ocular hypertension (OHT) and develop a preoperative predictive model for post-DMEK OHT.
Methods: Patients who underwent DMEK at Gangnam Severance Hospital between 2017 and 2024 were included in the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!