Small RNA GadY in enhances conjugation system of IncP-1 by targeting SdiA.

Front Cell Infect Microbiol

The Second Clinical Medical College, Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.

Published: August 2024

Plasmid-mediated conjugation is a common mechanism for most bacteria to transfer antibiotic resistance genes (ARGs). The conjugative transfer of ARGs is emerging as a major threat to human beings. Although several transfer-related factors are known to regulate this process, small RNAs (sRNAs)-based regulatory roles remain to be clarified. Here, the Hfq-binding sRNA GadY in donor strain () SM10λπ was identified as a new regulator for bacterial conjugation. Two conjugation models established in our previous studies were used, which SM10λπ carrying a chromosomally integrated IncP-1α plasmid RP4 and a mobilizable plasmid pUCP24T served as donor cells, and PAO1 or EC600 as the recipients. GadY was found to promote SM10λπ-PAO1 conjugation by base-pairing with its target mRNA SdiA, an orphan LuxR-type receptor that responds to exogenous N-acylated homoserine lactones (AHLs). However, SM10λπ-EC600 conjugation was not affected due to EC600 lacking AHLs synthase. It indicates that the effects of GadY on conjugation depended on AHLs-SdiA signalling. Further study found GadY bound SdiA to negatively regulate the global RP4 repressors KorA and KorB. When under ciprofloxacin or levofloxacin treatment, GadY expression in donor strain was enhanced, and it positively regulated quinolone-induced SM10λπ-PAO1 conjugation. Thus, our study provides a novel role for sRNA GadY in regulating plasmid-mediated conjugation, which helps us better understand bacterial conjugation to counter antibiotic resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300174PMC
http://dx.doi.org/10.3389/fcimb.2024.1445850DOI Listing

Publication Analysis

Top Keywords

conjugation
10
plasmid-mediated conjugation
8
antibiotic resistance
8
srna gady
8
donor strain
8
bacterial conjugation
8
sm10λπ-pao1 conjugation
8
gady
7
small rna
4
rna gady
4

Similar Publications

The causal relationship between 233 metabolites and coronary atherosclerosis: a Mendelian randomization study.

Front Cardiovasc Med

December 2024

National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Objective: To investigate the causal relationship between 233 newly reported metabolites and coronary atherosclerosis through Mendelian randomization analysis.

Methods: Five different methods were used to perform Mendelian randomization analysis on the 233 metabolites and coronary atherosclerosis, with inverse variance weighting as the primary result, supplemented by other methods.

Results: The analysis identified that certain metabolites increase the susceptibility risk of coronary atherosclerosis, including: Total fatty acids (OR = 1.

View Article and Find Full Text PDF

Efficient delivery of sensitive nucleic acid payloads, including mRNA, in remains challenging, especially with traditional, labor-intensive transgenesis methods. We addressed these challenges using polymeric nanogels (NGs) as an advanced platform for mRNA delivery in . These polymeric delivery vehicles can be engineered to suit desired applications owing to their chemical versatility, resulting from the ability to conjugate multiple functional groups onto the same backbone.

View Article and Find Full Text PDF

SUMO2 rescues neuronal and glial cells from the toxicity of P301L Tau mutant.

Front Cell Neurosci

December 2024

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Introduction: Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome.

View Article and Find Full Text PDF

Three triazine-based conjugated porous polymers (CPPs) are synthesized via a Pd-catalyzed Suzuki-Miyaura coupling reaction between derivatives of 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine (TTT) and 2,4,6-triphenyl-1,3,5-triazine (TPT). Photocatalysis experiments demonstrate that the hydrogen evolution rate (HER) of ThTh-CPP (homopolymer of TTT) reach an exceptional 46.4 mmol g⁻¹ h⁻¹ without co-catalysts, surpassing ThPh-CPP (8.

View Article and Find Full Text PDF

Detailed DFT studies of H and C NMR chemical shifts of hydroxy secondary oxidation products of various geometric isomers of conjugated linolenic acids methyl esters are presented. Several low energy conformers were identified for model compounds of the central dienenol OH moiety, which were found to be practically independent on the various functionals and basis sets used. This greatly facilitated the minimization process of the geometric isomers of conjugated linolenic acids methyl esters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!