Green, selective and efficient extraction of lithium as one of the most important components for energy storages with ultrasound-assisted membrane separation of lithium from brine, which contains alkali metal chlorides, is conducted using a composite membrane. The composite membrane is formed by sealing a supported ionic liquid membrane (consisting of 1-alkyl-3-methylimidazolium hexafluorophosphate ([RMIM][PF]) + TBP) with a polyethersulfone (PES) membrane and a PVC thin film membrane. The aim of the study is to optimize the separation process for the selective extraction of lithium from alkali metals. Various parameters, including membrane composition, feed concentration, and ultrasonic conditions, are adjusted to identify the best operating conditions. The results reveal that a membrane containing xIL = 0.5 of [MOIM][PF] exhibits higher selectivity compared to other membranes studied. The flux of lithium initially increases with shorter sonication times, but it decreases as the duration of ultrasonic irradiation is prolonged. The optimal frequency for the ultrasonic treatment, which matches the bulk modulus of the membrane, is approximately 250 kHz. Higher frequencies result in higher flux and selectivity in lithium separation; besides, optimizing the amplitude and pulse cycle of the ultrasound at 75% leads to increased flux. Moreover, higher flux and selectivity (percentage of lithium with respect to the all of the ion flux) are achieved when separating lithium from alkali metal chlorides at higher feed concentrations, ranging from 250 ppm to 1000 ppm. The selectivity is influenced by the hydrophobicity, which depends on the behavior of the ionic liquid membrane. The process is promising for the future of the lithium mining from brine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301406PMC
http://dx.doi.org/10.1039/d4ra03986fDOI Listing

Publication Analysis

Top Keywords

liquid membrane
12
membrane
11
lithium
9
separation lithium
8
lithium brine
8
extraction lithium
8
alkali metal
8
metal chlorides
8
composite membrane
8
ionic liquid
8

Similar Publications

In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings.

Int J Biol Macromol

January 2025

Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:

Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.

View Article and Find Full Text PDF

This investigation represents a pioneering effort to examine the therapeutic effects of PCB specifically in the context of CFA-induced mice, as well as to elucidate the underlying mechanisms that facilitate such effects. Our study utilized advanced methodologies, namely high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS)-based metabolomics, alongside comprehensive multivariate data analysis, to identify a distinctive metabolic profile associated with acute inflammation. Through our analyses, we discovered that several potential metabolites were significantly implicated in a variety of critical metabolic pathways.

View Article and Find Full Text PDF

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

MXene-based SERS spectroscopic analysis of exosomes for lung cancer differential diagnosis with deep learning.

Biomed Opt Express

January 2025

Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.

Lung cancer with heterogeneity has a high mortality rate due to its late-stage detection and chemotherapy resistance. Liquid biopsy that discriminates tumor-related biomarkers in body fluids has emerged as an attractive technique for early-stage and accurate diagnosis. Exosomes, carrying membrane and cytosolic information from original tumor cells, impart themselves endogeneity and heterogeneity, which offer extensive and unique advantages in the field of liquid biopsy for cancer differential diagnosis.

View Article and Find Full Text PDF

Engineering silica nanocoated whole-cell asymmetric biocatalyst for efficient preparation of a key chiral intermediate of (S)-Rivastigmine.

J Biotechnol

January 2025

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

In our previous study, the whole cells containing an aldo-keto reductase (yhdN) and glucose dehydrogenase (GDH) were constructed and applied in a stereoselective carbonyl reduction reaction to prepare (S)-NEMCA-HEPE, being a key chiral intermediate of (S)-Rivastigmine which is widely prescribed for the treatment of Alzheimer's disease. Although the conversion and enantiomeric excess (e.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!