A simple, one-pot method using zinc acetate and ultrasound irradiation has been developed to synthesize xanthene derivatives from cyclic diketones and aromatic aldehydes, yielding good to excellent results. This method offers advantages like mild conditions, high atom economy, easy isolation, and a recyclable catalyst. All xanthene derivatives, including two new molecules, were confirmed using standard spectroscopic methods, with X-ray crystallographic data provided for compound 3r. The synthesized molecules were shown to inhibit the VEGFR-2 enzyme, confirmed by molecular docking studies. A 200 ns molecular dynamics simulation validated these findings, showing significant stability for the 3e-VEGFR-2 complex after 1 ns and the 3p-VEGFR-2 complex for 8 ns. DFT calculations were used to analyze electronic and geometric properties, including HOMO and LUMO bandgap energies and molecular electrostatic potential surfaces. Additionally, the absorption, distribution, metabolism, and excretion (ADME) properties of the synthesis compounds were assessed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301142 | PMC |
http://dx.doi.org/10.1039/d4ra04135f | DOI Listing |
Plant Foods Hum Nutr
December 2024
Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.
The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
Bacteria biofilm infection seriously challenges clinical drug therapy. Nitric oxide (NO) was reported to disperse biofilm, eliminate bacteria resistance and kill bacteria. In this study, on the basis of membrane targeting of α-mangostin (α-MG) and the dispersion effect of NO on bacteria biofilms, we designed and synthesized 30 NO donors that α-MG was conjugated with a nitrobenzene or a nitrate and other four representative reference derivatives.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
The sensitive detection of glycosidases in live cells is crucial to understanding their functional roles in disease progression. Here, we develop a fluorogenic labeling probe for β-galactosidase (β-Gal) based on a bright green-emitting fluorescent dye, fluorescein. Galactose was introduced to a fluoromethyl-substituted fluorescein derivative through a benzyl spacer, resulting in a quenched fluorescence due to spirocyclization of the dye.
View Article and Find Full Text PDFMetabolomics
December 2024
LP2 Laboratory, Institute of Chemistry, Federal University of Mato Grosso Do Sul, Campo Grande, Brazil.
Introduction: The knowledge of the mode of action of an antimicrobial is essential for drug development and helps to fight against bacterial resistance. Thus, it is crucial to use analytical techniques to study the mechanism of action of substances that have potential to act as antibacterial agents OBJECTIVE: To use NMR-based metabolomics combined with chemometrics and molecular docking to identify the metabolic responses of Staphylococcus aureus following exposure to commercial antibiotics and some synthesized ω-aminoalkoxylxanthones.
Methods: Intracellular metabolites of S.
Spectrochim Acta A Mol Biomol Spectrosc
March 2025
Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China. Electronic address:
Ferroptosis, an iron-dependent programmed cell death mechanism, is mediated by distinct molecular pathways of lipid peroxidation caused by intracellular iron supplementation and glutathione synthesis inhibition that cause oxidative damage to the cell membrane. Monitoring viscosity changes of mitochondria is essential for a deeper understanding of ferroptosis, as mitochondria will be shrunk with increased membrane density and leading to drastic mitochondrial viscous changes during ferroptosis process. Thus, it is essential to explore novel and efficient fluorescent probes for monitoring viscosity in organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!