This study investigated the application of artificial intelligence algorithms (AIA) in the coagulation treatment of paint wastewater anchored by novel seed extract (PVSE). Untreated wastewater discharge harms the ecosystem, and therefore harmful industrial effluent, such as paint wastewater, must be brought to safe discharge levels before being released into the environment. In addition to AIA, comprehensive characterization tests, coagulation kinetics, and process optimization were also executed. Characterization results revealed that total solid in the PWW was above allowable standard, justifying the need for effective particle decontamination. The XRD and FTIR characterization indicated that PVSE structure is amorphous with abundant amine groups. Results of analysis of variance (ANOVA) obtained from process modeling indicated that the coagulation-flocculation process was a nonlinear quadratic system (F-value = 45.51) which was mostly influenced by PVSE coagulant dosage (F-value = 222.48; standardized effect = 14.85). Artificial intelligence indicated that neural network training effectively captured the nonlinear nature of the system in ANN (RMSE = 0.00040194; R = 0.98497), and ANFIS (RMSE = 0.003961) algorithms. Regression coefficient obtained from process modeling highlighted the suitability of RSM (0.9662), ANN (0.9739), and ANFIS (0.9718) in forecasting the coagulation-flocculation process, while comparative statistical appraisal authenticated the superiority of ANN model over RSM and ANFIS models. The coagulation kinetics experiment, which used a coagulation kinetic model, revealed a constant flocculation constant (Kf-value) for all jar test batches and a strong association between the Menkonu coagulation-flocculation constant (Km) and Kf values. Best removal efficiency of 97.01 % was obtained using ANN coupled genetic algorithm optimization (ANN-GA) at PVSE dosage of 4 g/L, coagulation time of 29 min and temperature of 25.1C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301250PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e34229DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
12
paint wastewater
12
novel seed
8
seed extract
8
extract pvse
8
coagulation kinetics
8
process modeling
8
coagulation-flocculation process
8
coagulation
6
pvse
5

Similar Publications

Incidence of fall-from-height injuries and predictive factors for severity.

J Osteopath Med

January 2025

McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.

Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.

View Article and Find Full Text PDF

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are intrinsic components of the tumor microenvironment that promote cancer progression and metastasis. Through an unbiased integrated analysis of gastric tumor grade and stage, we identified a subset of proangiogenic CAFs characterized by high podoplanin (PDPN) expression, which are significantly enriched in metastatic lesions and secrete chemokine (CC-motif) ligand 2 (CCL2). Mechanistically, PDPN(+) CAFs enhance angiogenesis by activating the AKT/NF-κB signaling pathway.

View Article and Find Full Text PDF

Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?

Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.

What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.

View Article and Find Full Text PDF

Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!