Reinforcement learning-based pinning control for synchronization suppression in complex networks.

Heliyon

Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.

Published: July 2024

Synchronization in complex networks is a ubiquitous and important phenomenon with implications in various fields. Excessive synchronization may lead to undesired consequences, making desynchronization techniques essential. Exploiting the Proximal Policy Optimization algorithm, this work studies reinforcement learning-based pinning control strategies for synchronization suppression in global coupling networks and two types of irregular coupling networks: the Watts-Strogatz small-world networks and the Barabási-Albert scale-free networks. We investigate the impact of the ratio of controlled nodes and the role of key nodes selected by the LeaderRank algorithm on the performance of synchronization suppression. Numerical results demonstrate the effectiveness of the reinforcement learning-based pinning control strategy in different coupling schemes of the complex networks, revealing a critical ratio of the pinned nodes and the superior performance of a newly proposed hybrid pinning strategy. The results provide valuable insights for suppressing and optimizing network synchronization behavior efficiently.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301210PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e34065DOI Listing

Publication Analysis

Top Keywords

reinforcement learning-based
12
learning-based pinning
12
pinning control
12
synchronization suppression
12
complex networks
12
coupling networks
8
networks
7
synchronization
6
pinning
4
control synchronization
4

Similar Publications

This research introduces an innovative approach to optimal control for a class of linear systems with input saturation. It leverages the synergy of Takagi-Sugeno (T-S) fuzzy models and reinforcement learning (RL) techniques. To enhance interpretability and analytical accessibility, our approach applies T-S models to approximate the value function and generate optimal control laws while incorporating prior knowledge.

View Article and Find Full Text PDF

This paper introduces Re-DQN, a deep reinforcement learning-based algorithm for comprehensive coverage path planning in lawn mowing robots. In the fields of smart homes and agricultural automation, lawn mowing robots are rapidly gaining popularity to reduce the demand for manual labor. The algorithm introduces a new exploration mechanism, combined with an intrinsic reward function based on state novelty and a dynamic input structure, effectively enhancing the robot's adaptability and path optimization capabilities in dynamic environments.

View Article and Find Full Text PDF

Decreasing the position error and control torque is important for the coordinate control of a modular unmanned system with less communication burden between the sensor and the actuator. Therefore, this paper proposes event-trigger reinforcement learning (ETRL)-based coordinate control of a modular unmanned system (MUS) via the nonzero-sum game (NZSG) strategy. The dynamic model of the MUS is established via joint torque feedback (JTF) technology.

View Article and Find Full Text PDF

Joint communication and sensing (JCS) is becoming an important trend in 6G, owing to its efficient utilization of spectrums and hardware resources. Utilizing echoes of the same signal can achieve the object location sensing function, in addition to the V2X communication function. There is application potential for JCS systems in the fields of ADAS and unmanned autos.

View Article and Find Full Text PDF

Liver cancer has a high mortality rate worldwide, and clinicians segment liver vessels in CT images before surgical procedures. However, liver vessels have a complex structure, and the segmentation process is conducted manually, so it is time-consuming and labor-intensive. Consequently, it would be extremely useful to develop a deep learning-based automatic liver vessel segmentation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!