Synaptotagmin A (SYTA), renowned for its indispensable role in mammalian vesicle trafficking, has recently captured attention in plant biology owing to its potential regulatory functions. This study meticulously delves into the involvement of SlSYTA in plant immunity, focusing on its response to an array of pathogens affecting tomatoes. Our comprehensive inquiry uncovers that SlSYTA overexpression heightens susceptibility to tobacco mosaic virus (TMV), , , and pv. DC3000, whereas RNA interference (RNAi) plants show a robust and encompassing resistance to these pathogens. Remarkably, our findings shed light on SlSYTA's negative regulation of pivotal aspects of pattern-triggered immunity (PTI) defense, notably hindering the reactive oxygen species (ROS) burst, impeding stomatal closure, and curtailing callose deposition. Through meticulous scrutiny via transcriptome and metabolome analyses, our studies reveal SlSYTA's profound impact on diverse plant defense pathways, specifically influencing phenylpropanoid metabolism, hormone signaling, and oxidative phosphorylation, primarily via NADPH synthesis modulation in the pentose phosphate pathway, and ultimately interplay within ROS signaling. Collectively, our research presents groundbreaking insights into the intricate molecular mechanisms governing plant immunity, emphasizing the significant role of SlSYTA in orchestrating plant responses to biotic stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301315 | PMC |
http://dx.doi.org/10.1093/hr/uhae176 | DOI Listing |
Front Plant Sci
January 2025
National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Chinese Materia Medica, Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Departamento de Producción Agrícola, Universidad de Chile, Santiago, Chile.
Heliyon
January 2025
Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou, Guangdong, 510663, China.
Spondyloarthritis is a prevalent and persistent condition that significantly impacts the quality of life. Its intricate pathological mechanisms have led to a scarcity of animal models capable of replicating the disease progression in humans, making it a prominent area of research interest in the field. To delve into the pathological and physiological traits of spontaneous non-human primate spondyloarthritis, this study meticulously examined the disease features of this natural disease model through an array of techniques including X-ray imaging, MRI imaging, blood biochemistry, markers of bone metabolism, transcriptomics, proteomics, and metabolomics.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Urology, Jiangsu Provincial People's Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.
Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.
Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!