A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A study of animal action segmentation algorithms across supervised, unsupervised, and semi-supervised learning paradigms. | LitMetric

AI Article Synopsis

  • Action segmentation involves labeling each frame in behavioral videos, essential for studying animal behavior across various species.
  • A variety of algorithms, including supervised, unsupervised, and semi-supervised learning methods, are evaluated for their effectiveness in identifying discrete animal behaviors.
  • The study introduces a new semi-supervised model, finding that fully supervised temporal convolutional networks, enhanced with temporal information, yield the highest performance on supervised metrics across different datasets.

Article Abstract

Action segmentation of behavioral videos is the process of labeling each frame as belonging to one or more discrete classes, and is a crucial component of many studies that investigate animal behavior. A wide range of algorithms exist to automatically parse discrete animal behavior, encompassing supervised, unsupervised, and semi-supervised learning paradigms. These algorithms - which include tree-based models, deep neural networks, and graphical models - differ widely in their structure and assumptions on the data. Using four datasets spanning multiple species - fly, mouse, and human - we systematically study how the outputs of these various algorithms align with manually annotated behaviors of interest. Along the way, we introduce a semi-supervised action segmentation model that bridges the gap between supervised deep neural networks and unsupervised graphical models. We find that fully supervised temporal convolutional networks with the addition of temporal information in the observations perform the best on our supervised metrics across all datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302674PMC

Publication Analysis

Top Keywords

action segmentation
12
supervised unsupervised
8
unsupervised semi-supervised
8
semi-supervised learning
8
learning paradigms
8
animal behavior
8
deep neural
8
neural networks
8
graphical models
8
supervised
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!