Effect of Diurnal Light Conditions on Electroretinogram Responses to Red and Blue Flickering Light.

Percept Mot Skills

Department of Human and Information Science, Tokai University, Hiratsuka, Japan.

Published: October 2024

Bright light impacts the human circadian system such that exposure to bright light at night can suppress melatonin secretion, and exposure to bright light in the morning prevents light-induced melatonin suppression at night. The preventive effect of morning light may attenuate the prior history of light sensitivity of intrinsically photosensitive retinal ganglion cells (ipRGCs) that regulate the circadian system. In this study, we evaluated electroretinogram (ERG) responses to red and blue flickering lights following dim and bright daylight conditions. Eleven healthy females underwent ERG measurements during exposure to 33 Hz flickering red or blue light under dim and bright daytime conditions. We averaged ERG waves for 50 flickering light pulses of the trigger signal data. We obtained the amplitude of the signal-averaged ERG by calculating the difference between the waves' peaks and bottoms. Although there was no significant dim and bright light difference in the amplitude of ERG waves, the ERG amplitude to flickering blue light under the bright light condition was significantly lower than to flickering blue light under the dim light condition. In this study, blue light stimulated mainly ipRGCs and S-cones. Since S-cones may contribute minimally to the light-adapted 33 Hz flicker ERG results, our findings suggest that bright light during the daytime attenuates the sensitivity of human ipRGCs.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00315125241272512DOI Listing

Publication Analysis

Top Keywords

bright light
24
blue light
16
light
15
red blue
12
dim bright
12
responses red
8
blue flickering
8
flickering light
8
bright
8
light bright
8

Similar Publications

Digital Mini-LED Lighting Using Organic Thin-Film Transistors Reaching over 100,000 Nits of Luminance.

Nanomaterials (Basel)

January 2025

Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

This paper demonstrates the use of organic thin-film transistors (OTFTs) to drive active digital mini light-emitting diode (mini-LED) backlights, aiming to achieve exceptional display performance. Our findings reveal that OTFTs can effectively power mini-LED backlights, reaching brightness levels exceeding 100,000 nits. This approach not only enhances image quality but also improves energy efficiency.

View Article and Find Full Text PDF

The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths.

View Article and Find Full Text PDF

A dimmable LED light source along the Planckian locus.

iScience

January 2025

Ningbo Sunpu Led Co., Ltd., Ningbo 315000, China.

Multiple channels are designed for dimmable LED light sources with color temperatures ranging from 2,700 to 6,500 K. However, issues such as Delta uv (D) values <0, lower brightness, luminous efficacy, and color rendering index (CRI), lower power density, exceeding the standard deviation of color matching (SDCM), unconstant power, poor color consistencies, and high costs persist. We present a three-channel LED light source featuring an integrated chip-on-board (COB) package structure.

View Article and Find Full Text PDF

Single-cell RNA sequencing highlights the role of distinct natural killer subsets in sporadic amyotrophic lateral sclerosis.

J Neuroinflammation

January 2025

Memory Unit, Neurology Department and Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí 77-79, 08041, Barcelona, Spain.

Background: Neuroinflammation plays a major role in amyotrophic lateral sclerosis (ALS), and cumulative evidence suggests that systemic inflammation and the infiltration of immune cells into the brain contribute to this process. However, no study has investigated the role of peripheral blood immune cells in ALS pathophysiology using single-cell RNA sequencing (scRNAseq).

Methods: We aimed to characterize immune cells from blood and identify ALS-related immune alterations at single-cell resolution.

View Article and Find Full Text PDF

Boosting Multicolor Emission Enhancement in Two-Dimensional Covalent-Organic Frameworks via the Pressure-Tuned π-π Stacking Mode.

Nano Lett

January 2025

Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

Covalent-organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π-π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!