A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Salt-Assisted Recovery of Sodium Metal Anodes for High-Rate Capability Sodium Batteries. | LitMetric

Rechargeable sodium metal batteries are considered to be one of the most promising high energy density and cost-effective electrochemical energy storage systems. However, their practicality is constrained by the high reactivity of sodium metal anodes that readily brings about excessive accumulation of inactive Na species on the surface, either by chemical reactions with oxygen and moisture during electrode handling or through electrochemical processes with electrolytes during battery operation. Herein, this paper reports on an alkali, salt-assisted, assembly-polymerization strategy to recover Na activity and to reinforce the solid-electrolyte interphase (SEI) of sodium metal anodes. To achieve this, an alkali-reactive coupling agent 3-glycidoxypropyltrimethoxysilane (GPTMS) is applied to convert inactive Na species into Si-O-Na coordination with a self-assembly GPTMS layer that consists of inner O-Si-O networks and outer hydrophobic epoxides. As a result, the electrochemical activity of Na metal anodes can be fully recovered and the robust GPTMS-derived SEI layer ensures high capacity and long-term cycling under an ultrahigh rate of 30 C (93.1 mAh g, 94.8% after 3000 cycles). This novel process provides surface engineering clues on designing high power density and cost-effective alkaline metal batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202409976DOI Listing

Publication Analysis

Top Keywords

sodium metal
16
metal anodes
16
metal batteries
8
density cost-effective
8
inactive species
8
metal
6
sodium
5
salt-assisted recovery
4
recovery sodium
4
anodes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!