Background: The neural mechanisms underlying congenital sensorineural hearing loss (CSNHL) remain elusive.
Objective: This study evaluated the function of the glymphatic system in children with CSNHL compared to normal-hearing children using the DTI-ALPS approach, which utilizes diffusion tensor imaging along the perivascular space.
Methods: Twenty-six children with CSNHL and 30 age- and sex-matched healthy controls (HCs) with normal hearing thresholds were recruited. The DTIALPS index was calculated for each group. We analyzed the discrepancies in the DTI-ALPS index between patients with CSNHL and healthy controls. Additionally, Spearman's correlation analysis was performed to investigate the relationship between the DTI-ALPS index and age in children with CSNHL.
Results: Significant differences in the DTI-ALPS index were observed between the two groups. Compared with HCs, the DTI-ALPS index in CSNHL patients was significantly lower (1.49388±0.11441 vs. 1.61402±0.15430, p=0.002). In addition, diffusivity along the z-axis in the association fiber (Dzzassoc) index was significantly higher in the CSNHL group than in the HC group (0.00041±0.00006 vs. 0.00036±0.00004, p=0.003). Furthermore, we discovered a noteworthy downward correlation between the DTI-ALPS index and age in children with CSNHL (rho = -0.544, p=0.005).
Conclusion: In this present study, glymphatic system activity in CSNHL children was investigated for the first time using the DTI-ALPS index. A significant decrease in glymphatic system function was detected in CSNHL children, which correlated well with age. The DTI-ALPS index could serve as a valuable biomarker for tracking disease progression and treatment in CSNHL and unraveling the neural mechanisms of early hearing deprivation in children with CSNHL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0115734056305276240730113140 | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.
Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.
Inferior frontal sulcal hyperintensities (IFSH) observed on fluid-attenuated inversion recovery (FLAIR) MRI have been proposed as indicators of elevated cerebrospinal fluid waste accumulation in cerebral small vessel disease (CSVD). However, to validate IFSH as a reliable imaging biomarker, further replication studies are required. The objective of this study was to investigate associations between IFSH and CSVD, and their potential repercussions, i.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China.
Objectives: To assess glymphatic function and white matter integrity in children with autism spectrum disorder (ASD) using multi-parametric MRI, combined with machine learning to evaluate ASD detection performance.
Materials And Methods: This retrospective study collected data from 110 children with ASD (80 exploratory, 43 validation) and 68 typically developing children (50 exploratory, 18 validation) from two centers. The automated diffusion tensor imaging along the perivascular space (aDTI-ALPS), fractional anisotropy (FA), cerebrospinal fluid volume, and perivascular space (PVS) volume indices were extracted from DTI, three-dimensional T1-weighted, and T2-weighted images.
J Physiol Sci
January 2025
Department of Neurology, Keio University School of Medicine, Tokyo, Japan.
The joint workshop between U.S. and Japanese researchers, supported by The U.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
Objectives: To investigate glymphatic function in idiopathic normal pressure hydrocephalus (iNPH) using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) method and to explore the associations of ALPS index with ventriculomegaly and white matter hyperintensities (WMH).
Materials And Methods: This study included 41 patients with iNPH and 40 age- and sex-matched normal controls (NCs). All participants underwent brain MRI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!