A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radiomics nomogram based on CT radiomics features and clinical factors for prediction of Ki-67 expression and prognosis in clear cell renal cell carcinoma: a two-center study. | LitMetric

Objectives: To develop and validate a radiomics nomogram combining radiomics features and clinical factors for preoperative evaluation of Ki-67 expression status and prognostic prediction in clear cell renal cell carcinoma (ccRCC).

Methods: Two medical centers of 185 ccRCC patients were included, and each of them formed a training group (n = 130) and a validation group (n = 55). The independent predictor of Ki-67 expression status was identified by univariate and multivariate regression, and radiomics features were extracted from the preoperative CT images. The maximum relevance minimum redundancy (mRMR) and the least absolute shrinkage and selection operator algorithm (LASSO) were used to identify the radiomics features that were most relevant for high Ki-67 expression. Subsequently, clinical model, radiomics signature (RS), and radiomics nomogram were established. The performance for prediction of Ki-67 expression status was validated using area under curve (AUC), calibration curve, Delong test, decision curve analysis (DCA). Prognostic prediction was assessed by survival curve and concordance index (C-index).

Results: Tumour size was the only independent predictor of Ki-67 expression status. Five radiomics features were finally identified to construct the RS (AUC: training group, 0.821; validation group, 0.799). The radiomics nomogram achieved a higher AUC (training group, 0.841; validation group, 0.814) and clinical net benefit. Besides, the radiomics nomogram provided a highest C-index (training group, 0.841; validation group, 0.820) in predicting prognosis for ccRCC patients.

Conclusions: The radiomics nomogram can accurately predict the Ki-67 expression status and exhibit a great capacity for prognostic prediction in patients with ccRCC and may provide value for tailoring personalized treatment strategies and facilitating comprehensive clinical monitoring for ccRCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302839PMC
http://dx.doi.org/10.1186/s40644-024-00744-1DOI Listing

Publication Analysis

Top Keywords

ki-67 expression
28
radiomics nomogram
24
radiomics features
20
expression status
20
training group
16
validation group
16
radiomics
12
prognostic prediction
12
features clinical
8
clinical factors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!