The Role of Thrombo-inflammation in Ischemic Stroke: Focus on the Manipulation and Clinical Application.

Mol Neurobiol

Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Published: February 2025

Stroke leaves a great economic burden due to its high morbidity and mortality. Rapid revascularization of targeted vessel(s) is the effective treatment for ischemic stroke, but subsequent ischemia-reperfusion (I/R) injury is a common complication following revascularization, leading to microcirculation dysfunction and infarct volume increase. Thrombo-inflammation, the interaction between thrombosis and inflammation, plays a critical role in the pathophysiology of ischemic stroke. In the context of I/R injury, thrombo-inflammation consists of platelet activation, endothelial injury, and inflammatory cell infiltration. Numerous studies are devoted to exploring methods of regulating thrombo-inflammation to mitigate I/R injury post-stroke, including blocking activations of platelets and neutrophils. Drugs such as antiplatelet medications, anticoagulants, and glucocorticoids have been confirmed to have the potential to regulate thrombo-inflammation. Furthermore, several recently developed drugs have also shown promises in relieving I/R injury by manipulating thrombo-inflammation. However, the majority of these studies are still in the preclinical stage. Herein, in this review, we will address the mechanisms of thrombo-inflammation in ischemic stroke, related research advances, and particularly the clinical feasibility of thrombo-inflammation as a therapeutic strategy against I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-024-04397-wDOI Listing

Publication Analysis

Top Keywords

i/r injury
20
ischemic stroke
16
thrombo-inflammation ischemic
8
thrombo-inflammation
7
injury
6
stroke
5
i/r
5
role thrombo-inflammation
4
ischemic
4
stroke focus
4

Similar Publications

Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.

Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.

View Article and Find Full Text PDF

Background: Myocardial ischemia/reperfusion (I/R) injury, which is associated with high morbidity and mortality, is a main cause of unexpected myocardial injury after acute myocardial infarction. However, the underlying mechanism remains unclear. Circular RNAs (circRNAs), which are formed from protein-coding genes, can sequester microRNAs or proteins, modulate transcription and interfere with splicing.

View Article and Find Full Text PDF

Dietary and nutritional interventions for human diseases: their modulatory effects on ferroptosis.

Food Funct

January 2025

The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China.

A balanced diet is essential for maintaining human health. Increasing evidence suggests that dietary and nutritional interventions contribute to disease management and are associated with reduced healthcare costs and economic burden. Ferroptosis, a novel type of regulated cell death (RCD) driven by lipid peroxidation, has been shown to be involved in various pathological conditions, including diabetes, ischemia/reperfusion (I/R) injury, inflammation-related diseases, and cancer.

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is a significant clinical problem impacting the heart and other organs, such as the kidneys and liver. This study explores the protective effects of oxycodone on myocardial I/R injury and its underlying mechanisms. Using a myocardial I/R model in Sprague-Dawley (SD) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in H9c2 cells, we administered oxycodone and inhibited AMP-activated protein kinase (AMPK) with Compound C (C.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!