Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bentazone is a broad-leaved weed-specific herbicide in the pesticide industry. This study focused on removing bentazone from water using three different methods: a two and three-dimensional electro-oxidation process (2D/EOP and 3D/EOP) with a fluid-type reactor arrangement using tetraethylenepentamine-loaded particle electrodes and an adsorption method. Additionally, we analysed the effects of two types of supporting electrolytes (NaSO and NaCl) on the degradation process. The energy consumption amounts were calculated to evaluate the obtained results. The degradation reaction occurs 3.5 times faster in 3D/EOP than in 2D/EOP at 6 V in NaSO. Similarly, the degradation reaction of bentazone in NaCl occurs 2.5 times faster in 3D/EOP than in 2D/EOP at a value of 7.2 mA/cm. Removal of bentazone is significantly better in 3D/EOPs than in 2D/EOPs. The use of particle electrodes can significantly enhance the degradation efficiency. The study further assessed the prediction abilities of the machine learning model (ANN). The ANN presented reasonable accuracy in bentazone degradation with high R values of 0.97953, 0.98561, 0.98563, and 0.99649 for 2D with NaSO, 2D with NaCl, 3D with NaSO, and 3D with NaCl, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-34493-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!