Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303397PMC
http://dx.doi.org/10.1038/s41598-024-69255-0DOI Listing

Publication Analysis

Top Keywords

medium spiny
8
spiny neurons
8
nucleus accumbens
8
nac
5
single-nucleus transcriptomic
4
transcriptomic atlas
4
atlas medium
4
neurons
4
neurons rat
4
rat nucleus
4

Similar Publications

Alcohol use disorder (AUD) is a chronic relapsing brain disorder characterized by an impaired ability to stop or control alcohol consumption despite adverse social, occupational, or health consequences. AUD affects nearly one-third of adults at some point during their lives, with an associated cost of approximately $249 billion annually in the U.S.

View Article and Find Full Text PDF

Early developmental changes in GABAA receptor expression in nucleus accumbens medium spiny neurons.

Front Neurosci

December 2024

Stress Neurobiology Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States.

The expression of GABARs goes through large scale, evolutionarily conserved changes through the early postnatal period. While these changes have been well-studied in brain regions such as the hippocampus and sensory cortices, less is known about early developmental changes in other brain areas. The nucleus accumbens (NAc) is a major hub in the circuitry that mediates motivated behaviors and disruptions in NAc activity is a part of the neuropathology observed in mood and substance use disorders.

View Article and Find Full Text PDF

Optimization of the preparation of a spiny spore high-concentrated Aspergillus brasiliensis suspension.

Lett Appl Microbiol

December 2024

Cantel Medical Italy, a STERIS Company, Via Laurentina, 169, 00071 Pomezia, Italy.

This work aimed to improve some steps of the existing guidelines of the European Standards to obtain an Aspergillus brasiliensis ATCC 16404 spore suspension with >75% spiny spores without mycelia and a concentration of at least 1.5×108 CFU ml-1. Several manufacturers' combinations "strain/medium" were assessed in terms of yield of spiny spores.

View Article and Find Full Text PDF

Synaptic modulation of glutamate in striatum of the YAC128 mouse model of Huntington disease.

Neurobiol Dis

December 2024

Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. Electronic address:

Background: Altered balance between striatal direct and indirect pathways contributes to early motor, cognitive and psychiatric symptoms in Huntington disease (HD). While degeneration of striatal D2-type dopamine receptor (D2)-expressing indirect pathway medium spiny neurons (iMSNs) occurs prior to that of D1-type dopamine receptor (D1)-expressing direct pathway neurons, altered corticostriatal synaptic function precedes degeneration. D2-mediated signaling on iMSNs reduces their excitability and promotes endocannabinoid (eCB) synthesis, suppressing glutamate release from cortical afferents.

View Article and Find Full Text PDF

Oligodendrocytes in Huntington's Disease: A Review of Oligodendrocyte Pathology and Current Cell Reprogramming Approaches for Oligodendrocyte Modelling of Huntington's Disease.

J Neurosci Res

December 2024

Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, School of Medical Science, Centre for Brain Research, University of Auckland, Auckland, New Zealand.

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder traditionally characterized by the selective loss of medium spiny neurons in the basal ganglia. However, it has become apparent that white matter injury and oligodendrocyte dysfunction precede the degeneration of medium spiny neurons, garnering interest as a key pathogenic mechanism of HD. Oligodendrocytes are glial cells found within the central nervous system involved in the production of myelin and the myelination of axons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!