The current investigation involved the silver nanoparticles green synthesis utilizing the aqueous extract derived from the Foeniculum vulgare leaves (AgNPs@FV). The effectiveness of these newly developed nanoparticles in conjunction with radiotherapy was evaluated on lung cancer cells. The synthesized AgNPs@FV underwent characterization through various analytical techniques such as energy dispersive X-ray (EDX), field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) spectrophotometry. The efficacy of AgNPs@FV in conjunction with radiotherapy against human lung cancer was assessed through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The AgNPs@FV exhibited a spherical morphology ranging in size from 10.16 to 42.74 nm. The EDX diagram of nanoparticles shows energy signals at 3.02 and 2.64 keV, which are attributed to Ag Lβ and Ag Lα, respectively. During the antioxidant evaluation, AgNPs@FV and butylated hydroxytoluene (BHT) displayed IC values of 166 and 59 µg/mL, respectively. The cells treated with AgNPs@FV in conjunction with radiotherapy were evaluated using the MTT assay over 48 h to determine cytotoxicity and anti-human lung cancer characteristics on normal (human umbilical vein endothelial cell (HUVEC)) and lung cancer cells and exhibited IC values of 211, 166, and 296 µg/mL against NCI-H2126, NCI-H1299, and NCI-H1437, respectively. Furthermore, the malignant lung cell viability decreased when treated with a combination of AgNPs@FV and radiotherapy. Based on the aforementioned findings, it is possible that the newly developed AgNPs@FV could serve as a novel chemotherapeutic medication or adjunct for addressing lung cancer following the completion of clinical trials involving human subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-024-04332-z | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFMed Chem
January 2025
Integrated Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu, 603203, India.
Introduction: The marine habitat is a plentiful source of diverse, active compounds that are extensively utilised for their medicinal properties. Pharmaceutical trends have currently changed towards utilising a diverse range of goods derived from the marine environment.
Method: This study aimed to examine the inhibitory effects of bioactive chemicals derived from marine algae and bacteria.
Anticancer Agents Med Chem
January 2025
Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
Introduction: Immunotherapy targeting PD-1/PD-L1 shows significant benefits in lung cancer. Cutaneous immune-related adverse events (irAEs) are frequent, early-developing side effects of ICIs, and their potential role as prognostic markers in non-small cell lung cancer (NSCLC) therapy requires further exploration.
Methods: Data of patients with NSCLC treated with camrelizumab Combined with chemotherapy were collected at Xuzhou Medical University from 2019 to 2023.
Cancer Manag Res
January 2025
Department of Clinical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China.
Purpose: (Tumor-educated platelets) TEPs have emerged as active players in all steps of tumorigenesis, confrontation of platelets with tumor cells via transfer of tumor-associated biomolecules and results in the sequestration of such biomolecules. The current study was aimed to examine whether TEPs lncRNA-STARD4-AS1 and ELOA-AS1 might be potential biomarkers for NSCLC.
Materials And Methods: TEPs were obtained by low-speed centrifugation.
Int J Med Sci
January 2025
Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
While NUSAP1's association with various tumors is established, its predictive value for prognosis and immunotherapy in lung adenocarcinoma (LUAD) remains unconfirmed. We analyzed Nucleolar Spindle-Associated Protein 1 (NUSAP1) gene expression in TCGA and GTEx datasets and validated it in clinicopathological tissues using qRT-PCR and immunohistochemistry. Additionally, we investigated NUSAP1's relationship with patient prognosis across TCGA and five GEO cohorts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!