A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning-based corrosion rate prediction of steel embedded in soil. | LitMetric

Machine learning-based corrosion rate prediction of steel embedded in soil.

Sci Rep

Glenn Department of Civil Engineering, Department of Materials Science and Engineering, Clemson University, Clemson, SC, USA.

Published: August 2024

Predicting the corrosion rate for soil-buried steel is significant for assessing the service-life performance of structures in soil environments. However, due to the large amount of variables involved, existing corrosion prediction models have limited accuracy for complex soil environment. The present study employs three machine learning (ML) algorithms, i.e., random forest, support vector regression, and multilayer perception, to predict the corrosion current density of soil-buried steel. Steel specimens were embedded in soil samples collected from different regions of the Wisconsin state. Variables including exposure time, moisture content, pH, electrical resistivity, chloride, sulfate content, and mean total organic carbon were measured through laboratory tests and were used as input variables for the model. The current density of steel was measured through polarization technique, and was employed as the output of the model. Of the various ML algorithms, the random forest (RF) model demonstrates the highest predictability (with an RMSE value of 0.01095 A/m and an R value of 0.987). In light of the feature selection method, the electrical resistivity is identified as the most significant feature. The combination of three features (resistivity, exposure time, and mean total organic carbon) is the optimal scenario for predicting the corrosion current density of soil-buried steel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303726PMC
http://dx.doi.org/10.1038/s41598-024-68562-wDOI Listing

Publication Analysis

Top Keywords

soil-buried steel
12
current density
12
corrosion rate
8
embedded soil
8
predicting corrosion
8
algorithms random
8
random forest
8
corrosion current
8
density soil-buried
8
exposure time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!