Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Predicting the corrosion rate for soil-buried steel is significant for assessing the service-life performance of structures in soil environments. However, due to the large amount of variables involved, existing corrosion prediction models have limited accuracy for complex soil environment. The present study employs three machine learning (ML) algorithms, i.e., random forest, support vector regression, and multilayer perception, to predict the corrosion current density of soil-buried steel. Steel specimens were embedded in soil samples collected from different regions of the Wisconsin state. Variables including exposure time, moisture content, pH, electrical resistivity, chloride, sulfate content, and mean total organic carbon were measured through laboratory tests and were used as input variables for the model. The current density of steel was measured through polarization technique, and was employed as the output of the model. Of the various ML algorithms, the random forest (RF) model demonstrates the highest predictability (with an RMSE value of 0.01095 A/m and an R value of 0.987). In light of the feature selection method, the electrical resistivity is identified as the most significant feature. The combination of three features (resistivity, exposure time, and mean total organic carbon) is the optimal scenario for predicting the corrosion current density of soil-buried steel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303726 | PMC |
http://dx.doi.org/10.1038/s41598-024-68562-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!