Clarification of the cytotoxic function of T cells is crucial for understanding human immune responses and immunotherapy procedures. Here, we report a high-throughput Bessel oblique plane microscopy (HBOPM) platform capable of 3D live imaging and phenotyping of chimeric antigen receptor (CAR)-modified T-cell cytotoxicity against cancer cells. The HBOPM platform has the following characteristics: an isotropic subcellular resolution of 320 nm, large-scale scouting over 400 interacting cell pairs, long-term observation across 5 hours, and quantitative analysis of the Terabyte-scale 3D, multichannel, time-lapse image datasets. Using this advanced microscopy platform, several key subcellular events in CAR-T cells are captured and comprehensively analyzed; these events include the instantaneous formation of immune synapses and the sustained changes in the microtubing morphology. Furthermore, we identify the actin retrograde flow speed, the actin depletion coefficient, the microtubule polarization and the contact area of the CAR-T/target cell conjugates as essential parameters strongly correlated with CAR-T-cell cytotoxic function. Our approach will be useful for establishing criteria for quantifying T-cell function in individual patients for all T-cell-based immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303822PMC
http://dx.doi.org/10.1038/s41467-024-51039-9DOI Listing

Publication Analysis

Top Keywords

live imaging
8
imaging phenotyping
8
high-throughput bessel
8
bessel oblique
8
oblique plane
8
plane microscopy
8
cytotoxic function
8
hbopm platform
8
phenotyping car-t
4
car-t cell
4

Similar Publications

Objective: Loss of function of the phospholipid scramblase (PLS) TMEM16F results in Scott Syndrome, a hereditary bleeding disorder generally attributed to intrinsic platelet dysfunction. The role of TMEM16F in endothelial cells, however, is not well understood. We sought to test the hypothesis that endothelial TMEM16F contributes to hemostasis by measuring bleeding time and venous clotting in endothelial-specific knockout (ECKO) mice.

View Article and Find Full Text PDF

3D ophthalmic ultrasonography at the slit lamp using existing ultrasound systems.

PLoS One

January 2025

Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States of America.

Purpose: This study aims to explore the feasibility and performance of three-dimensional ultrasound (3DUS) imaging in ophthalmology using commercially available ultrasound probes adapted to a slit lamp.

Significance: Despite ultrasound's long-standing application in eye care for visualizing ocular components, the evolution of 3DUS technology has remained inactive, with limited development and commercial availability. This study introduces a novel method that could potentially enhance ophthalmic diagnostics and treatment planning by providing comprehensive 3D views of ocular structures using existing ultrasound probes adapted to the conventional slit lamp.

View Article and Find Full Text PDF

Background/purpose: Temporomandibular joint (TMJ) arthritis causes inflammation and degradation of the mandibular condylar cartilage and subchondral bone. Complete Freund's adjuvant (CFA) and collagen-induced arthritis (CIA) are models for studying TMJ arthritis. While micro-computed tomography (micro-CT) is crucial for three-dimensional (3D) bone analysis, it has limitations in imaging nonmineralized tissues.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi engage in symbiotic relationships with plants, influencing their phosphate (Pi) uptake pathways, metabolism, and root cell physiology. Despite the significant role of Pi, its distribution and response dynamics in mycorrhizal roots remain largely unexplored. While traditional techniques for Pi measurement have shed some light on this, real-time cellular-level monitoring has been a challenge.

View Article and Find Full Text PDF

Probing and imaging phospholipid dynamics in live cells.

Life Metab

August 2024

State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

Distinct phospholipid species display specific distribution patterns across cellular membranes, which are important for their structural and signaling roles and for preserving the integrity and functionality of the plasma membrane and organelles. Recent advancements in lipid biosensor technology and imaging modalities now allow for direct observation of phospholipid distribution, trafficking, and dynamics in living cells. These innovations have markedly advanced our understanding of phospholipid function and regulation at both cellular and subcellular levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!