A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimized phenol degradation and lipid production by Rhodosporidium toruloides using response surface methodology and genetic algorithm-optimized artificial neural network. | LitMetric

Oleaginous yeast can produce lipids while degrading phenol in wastewater treatment. In this study, a Plackett-Burman Design (PBD) was adopted to identify key factors of phenol degradation and lipid production using R toruloides 9564. While temperature, inoculum size, and agitation were significant for both the processes (p < 0.05), pH and incubation were significant for lipid production, and phenol removal, respectively. Results from four factors (pH, temperature, inoculum size, and incubation period) central composite design (CCD) experiment were used to formulate quadratic and genetic algorithm-optimized ANN models. The reduced quadratic model for phenol degradation (R: 0.993) and lipid production (R: 0.958) were marginally inferior to ANN models (R: 0.999, 0.982, respectively) on training sets. Multi-objective optimization with equal importance suggests phenol degradation between 106.4 and 108.76%, and lipid production of 0.864-0.903 g/L, by polynomial and ANN models. Complete phenol degradation (100%) and 3.35-fold increment (0.918 g/L) in lipid production were obtained at pH 6.07, inoculum size 14.68% v/v, at 29.5 °C in 92.17 h experimentally.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142971DOI Listing

Publication Analysis

Top Keywords

phenol degradation
8
degradation lipid
8
lipid production
8
optimized phenol
4
production rhodosporidium
4
rhodosporidium toruloides
4
toruloides response
4
response surface
4
surface methodology
4
methodology genetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!