. The widespread adoption of Photoplethysmography (PPG) as a non-invasive method for detecting blood volume variations and deriving vital physiological parameters reflecting health status has surged, primarily due to its accessibility, cost-effectiveness, and non-intrusive nature. This has led to extensive research around this technique in both daily life and clinical applications. Interestingly, despite the existence of contradictory explanations of the underlying mechanism of PPG signals across various applications, a systematic investigation into this crucial matter has not been conducted thus far. This gap in understanding hinders the full exploitation of PPG technology and undermines its accuracy and reliability in numerous applications.. Building upon a comprehensive review of the fundamental principles and technological advancements in PPG, this paper initially attributes the origin of PPG signals to a combination of physical and physiological transmission processes. Furthermore, three distinct models outlining the concerned physiological transmission processes are synthesized, with each model undergoing critical examination based on theoretical underpinnings, empirical evidence, and constraints.. The ultimate objective is to form a fundamental framework for a better understanding of physiological transmission processes in PPG signal generation and to facilitate the development of more reliable technologies for detecting physiological signals.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6579/ad6be4DOI Listing

Publication Analysis

Top Keywords

physiological transmission
16
transmission processes
12
understanding physiological
8
comprehensive review
8
ppg signals
8
ppg
6
physiological
5
transmission
4
transmission mechanisms
4
mechanisms photoplethysmography
4

Similar Publications

Inactivation of CaV1 and CaV2 channels.

J Gen Physiol

March 2025

Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.

Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression.

View Article and Find Full Text PDF

Environmental factors play a crucial role in bacterial virulence. During transmission, in a non-host environment bacteria are exposed to various environmental stress which could alter bacterial physiology and virulence. N.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a severe disease of the central nervous system (CNS) characterized by motor neuron damage leading to death from respiratory failure. The neurodegenerative process in ALS is characterized by an accumulation of aberrant proteins (TDP-43, SOD1, etc.) in CNS cells.

View Article and Find Full Text PDF

Antibiotic resistance gene pollution in poultry farming environments and approaches for mitigation: A system review.

Poult Sci

January 2025

College of Biology and Agriculture, Shaoguan University, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, 512005, Guangdong, PR China. Electronic address:

Antibiotic resistance genes (ARG) pollution in poultry farming environments has become increasingly critical, primarily driven by the widespread use of antibiotics in animal husbandry. Prolonged antibiotic use has led to the emergence of ARGs and antibiotic-resistant bacteria, spreading via horizontal and vertical gene transfer. The complexity of ARG pollution in poultry farming arises from the unique farming practices, physiological characteristics of poultry, and manure management methods, with manure, wastewater, and air serving as significant vectors for ARG dissemination.

View Article and Find Full Text PDF

Visual cues of respiratory contagion: Their impact on neuroimmune activation and mucosal immune responses in humans.

Brain Behav Immun

January 2025

Department of Biology, Neuroendocrinology and Human Biology Unit, Institute for Animal Cell- and Systems Biology, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, D-22085 Hamburg, Germany. Electronic address:

This study investigated the neural correlates of perceiving visual contagion cues characteristic of respiratory infections through functional magnetic resonance imaging (fMRI). Sixty-two participants (32f/ 30 m; ∼25 years on average) watched short videos depicting either contagious or non-contagious everyday situations, while their brain activation was continuously measured. We further measured the release of secretory immunoglobulin A (sIgA) in saliva to examine the first-line defensive response of the mucosal immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!