AI Article Synopsis

  • Lactic acid bacteria (LAB) can transform inorganic selenium into less toxic and more bioavailable forms, but detailed studies on selenium-enriched LAB are missing.
  • In this research, the strain Limosilactobacillus fermentum Ln-9 was modified and showed a selenium accumulation that was 3.03 times higher than the original strain, with optimal conditions yielding 12.16 mg/g of selenium, mostly in the form of nanoparticles.
  • The study found that selenium nanoparticles were primarily found outside the cell, while other selenium compounds were located in various cell fractions, and highlighted Ln-9's potential for use in the food industry due to its favorable characteristics and antioxidant properties.

Article Abstract

Lactic acid bacteria (LAB) can convert inorganic selenium (Se) to organic Se and elemental forms with low toxicity and high bioavailability, but a comprehensive Se analysis of Se-enriched LAB is lacking. In this study, Limosilactobacillus fermentum Ln-9 was obtained by intense pulsed light-ultraviolet combined mutagenesis, and its characteristics and subcellular localization of Se were analyzed. The results displayed that Ln-9 accumulated 3.03 times Se that of the original strain. Under optimal fermentation conditions, the total Se content of Se-enriched Ln-9 (SeLn-9) reached 12.16 mg/g with 96.34% contained in Se nanoparticles (SeNPs), which was much higher than that of organic macromolecules. Furthermore, SeNPs were mainly localized outside the cell, Se-proteins were in the membrane and cytoplasmic fractions, and Se-polysaccharides were in the membrane fraction. Besides, SeLn-9 maintained a good morphology and gastrointestinal tolerance and had an enhanced antioxidant capacity. These findings make Ln-9 promising for applications in the food industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140725DOI Listing

Publication Analysis

Top Keywords

subcellular localization
8
limosilactobacillus fermentum
8
fermentum ln-9
8
ln-9 intense
8
intense pulsed
8
pulsed light-ultraviolet
8
light-ultraviolet combined
8
combined mutagenesis
8
ln-9
5
characterization subcellular
4

Similar Publications

may inhibit esophageal squamous cell carcinoma growth and metastasis by regulating the axis.

Transl Cancer Res

December 2024

Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Background: FOXF2, a member of the transcription factor FOX family proteins, plays a key role in tumorigenesis and tumor aggressiveness. However, the potential molecular mechanism of FOXF2 in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Exploring its role and mechanism in ESCC progression may help identify new diagnostic markers and therapeutic targets.

View Article and Find Full Text PDF

Metformin (MET), a commonly prescribed medication for managing type 2 diabetes, has demonstrated various beneficial effects beyond its primary anti-diabetic efficacy. However, the mechanism underlying MET activity and its distribution within organelles remain largely unknown. In this study, we integrate multiple technologies, including chemical labeling, immunostaining, and high-resolution microscopy imaging, to visualize the accumulation of MET in organelles of cultured cells.

View Article and Find Full Text PDF

The nucleotide-binding domain, leucine-rich repeat, and pyrin domain containing-protein 3 (NLRP3) inflammasome is a multiprotein complex that plays a critical role in the innate immune response to both infections and sterile stressors. Dysregulated NLRP3 activation has been implicated in a variety of autoimmune and inflammatory diseases, including cryopyrin-associated periodic fever syndromes, diabetes, atherosclerosis, Alzheimer's disease, inflammatory bowel disease, and cancer. Consequently, fine-tuning NLRP3 activity holds significant therapeutic potential.

View Article and Find Full Text PDF

Resolving tissue complexity by multimodal spatial omics modeling with MISO.

Nat Methods

January 2025

Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Spatial molecular profiling has provided biomedical researchers valuable opportunities to better understand the relationship between cellular localization and tissue function. Effectively modeling multimodal spatial omics data is crucial for understanding tissue complexity and underlying biology. Furthermore, improvements in spatial resolution have led to the advent of technologies that can generate spatial molecular data with subcellular resolution, requiring the development of computationally efficient methods that can handle the resulting large-scale datasets.

View Article and Find Full Text PDF

T-cell receptor recognition of cognate peptide-MHC leads to the formation of signalling domains and the immunological synapse. Because of the close membrane apposition, there is rapid exclusion of CD45, and therefore LCK activation. Much less is known about whether spatial regulation of the intracellular face dictates LCK activity and TCR signal transduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!