A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A flexible consistent framework for modelling multiple interacting environmental responses to management in space and time. | LitMetric

A flexible consistent framework for modelling multiple interacting environmental responses to management in space and time.

J Environ Manage

Centre for Regional and Rural Futures, Deakin University, Locked Bag 20000, Geelong, Victoria, 3220, Australia.

Published: September 2024

Management of resources is often a large-scale task addressed using many small-scale interventions. The range of scales at which organisms respond to those interventions, along with the many outcomes which management aims to achieve can make determining the success of management complex. Environmental flow is an example of management where there is a recognized need for managers to demonstrate the impact of their actions by integrating different types of environmental responses. Here, we aim to support decision making in environmental management via the development of a new modelling framework (eFlowEval). It has the capacity to capture best-available knowledge, to scale it in space and time, explore interactions among species, compare scenarios, and account for uncertainty. Thus, it provides a basis for including multiple target groups in a common system. The framework is readily updatable as new information becomes available and can identify where data are insufficient to be scientifically robust. We demonstrate the eFlowEval framework using three very different environmental responses: 1) metabolism, which is a measure of the energy produced and then used in an ecosystem, 2) favorability for a bird species of interest (royal spoonbill Platalea regia), and 3) competing wetland plants (Centipeda cunninghamii and lippia Phyla canescens). These demonstrations illustrate the capability of the eFlowEval framework but the specific outputs shown here should not be used to assess environmental responses to management. Using these demonstrations, we illustrate the capacity of the eFlowEval framework to provide assessments across a range of scales (local to landscape) and from short time frames (weeks to months) to multi-year assessments. Further, we illustrate the ability to: i) scale responses from local to basin scales, ii) vary driver-response model types, iii) represent uncertainty, iv) compare scenarios, v) accommodate variable parameter values at different locations, and vi) incorporate spatial and temporal dependencies and dependencies among species. We also illustrate the framework's ability to capture inter- and intraspecific interactions and their impact in space and time. The eFlowEval framework extends the capacity of the component response models to provide novel modeling capabilities for management at scale. It allows for interactions among species or processes to be incorporated, as well as in space and time. A large degree of flexibility is offered by the framework, in terms of driver-response model types, input data, and aggregation methods. Thus, the eFlowEval framework provides a mechanism to enhance the transparency of environmental watering decision making, capture institutional knowledge, enhance adaptive management and undertake evaluation of the impact of environmental watering at a range of spatial and temporal scales.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122054DOI Listing

Publication Analysis

Top Keywords

efloweval framework
20
environmental responses
16
space time
16
framework
9
management
9
environmental
8
responses management
8
range scales
8
decision making
8
interactions species
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!