Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cadmium (Cd) toxicity poses a significant threat to soil health and sustainable food production. Its bioaccumulation in plant tissues induces phytotoxicity by affecting physiological and biochemical attributes, leading to a reduction in plant biomass and production. Recently, nanotechnology has emerged as a promising approach for addressing heavy metal toxicity in an eco-friendly manner to enhance crop production. However, the comparative role of foliar applied calcium oxide nanoparticles (CaO-NPs) and bulk calcium fertilizer under Cd stress in alfalfa remains unexplored. Herein, we studied the ameliorative role of CaO-NPs and bulk calcium (50 and 100 mg L) to alleviate Cd stress (30 mg kg) in alfalfa seedlings. Plants exposed to Cd exhibited significant decreases in morpho-physiological traits, gas exchange attributes, and pigment contents as well as increase in Cd bioaccumulation in plant tissues. Notably, exogenous application of CaO-NPs ameliorates the toxic impact of Cd by enhancing plant biomass (45%), fluorescence efficiency and gaseous exchange attributes. The maximum dose of CaO-NPs induced Cd-tolerance response accompanied by a significant increase in antioxidative enzyme activities, such as superoxide dismutase (SOD; 29%), peroxidase (POD; 41%), catalase (CAT; 36%) and ascorbate peroxidase (APX; 49%), which play positive roles in ROS scavenging. TEM examination further revealed the protective role of these NPs in averting Cd-induced damage to leaf ultrastructure and mesophyll cells. Furthermore, CaO-NPs had a substantial influence on both Cd and Ca accumulation in plant tissues, while qRT‒PCR analysis demonstrated higher expression of antioxidant defense genes viz. Cu/ZnSOD (0.38 fold change (FC)), MtPOD (0.51 FC), MtCAT (0.61 FC) and MtAPX (0.79 FC) under CaO-NPs application, over Cd control. Overall, our findings suggested that exogenous CaO-NPs could be effective in alleviating the adverse effects of Cd on alfalfa seedlings to ensure food safety and support sustainable agriculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2024.109002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!